Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 61(10): 2818-2824, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35471357

RESUMO

A compact fiber-optic Fabry-Perot (F-P) cavity for a sensor is designed based on a sandwich structure, adopting direct bonding of quartz glass. The reflective F-P cavity is manufactured by a fiber optic with a quartz glass ferrule and the sandwich structure with an air cavity, which is achieved by direct bonding of quartz glass. This fabrication process includes plasma surface activation, hydrophilic pre-bonding, high-temperature annealing, and dicing. The cross section of the bonding interface tested by a scanning electron microscope indicates that the sandwich structure is well bonded, and the air cavity is not deformed. Experiments show that the quality factor of the F-P cavity is 2711. Tensile strength testing shows that the bond strength exceeds 35 MPa. The advantage of direct bonding of quartz glass is that high consistency and mass production of the cavity can be realized. Moreover, the cavity is free of problems caused by the mismatch of thermal expansion coefficients between different materials. Therefore, the F-P cavity can be made into a sensor, which is promising in detecting air pressure, acoustic and high temperature.

2.
Micromachines (Basel) ; 13(2)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35208288

RESUMO

High-performance medical acoustic sensors are essential in medical equipment and diagnosis. Commercially available medical acoustic sensors are capacitive and piezoelectric types. When they are used to detect heart sound signals, there is attenuation and distortion due to the sound transmission between different media. This paper proposes a new bionic acoustic sensor based on the fish ear structure. Through theoretical analysis and finite element simulation, the optimal parameters of the sensitive structure are determined. The sensor is fabricated using microelectromechanical systems (MEMS) technology, and is encapsulated in castor oil, which has an acoustic impedance close to the human body. An electroacoustic test platform is built to test the performance of the sensor. The results showed that the MEMS bionic sensor operated with a bandwidth of 20-2k Hz. Its linearity and frequency responses were better than the electret microphone. In addition, the sensor was tested for heart sound collection application to verify its effectiveness. The proposed sensor can be effectively used in clinical auscultation and has a high SNR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...