Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 16(10): 1695-701, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16099167

RESUMO

Two series of new oligo(p-phenyleneethynylene)s (OPEs) O1-O4 and O5-O8, which have been proven to be one of the chief classes of molecules mainly used as the wires and other potential backbones of molecular electronic devices, have been synthesized by stepwise synthetic approach. The characterization of these oligomers was performed on MALDI TOF MS. Different cationization salts have been applied to investigate the ionization processes of these series of oligomers under MALDI conditions. The experimental results show that these oligomers display a strong tendency to undergo radical cationization and varied ionization efficiency with different cationization agents attributable to their difference in cationic diameters. Furthermore, we found that these two series of oligomers differed in ionization properties because of their different end-groups even when the same cationization agent was used.


Assuntos
Alcinos/análise , Alcinos/química , Cátions/análise , Cátions/química , Éteres/análise , Éteres/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
2.
Langmuir ; 20(3): 950-6, 2004 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-15773128

RESUMO

The key to optimizing the properties of molecular scale wires lies in understanding and controlling the solid-state morphologies. This paper examines the influence of oligomer chain length, solvent, and concentration on the formation of nanoscale ribbons on mica substrates from solutions of oligo(p-phenyleneethynylene)s (OPEs) with hexyloxy side chains and thioacetyl end groups. The OPEs are of different molecular chain lengths, in which the numbers ofp-dihexyloxyphenyleneethynylene repeat units, n, are 1, 3, 5, and 7, respectively, with their two ends capped with 4-thioacetylphenyl alligator groups. The atomic force microscope (AFM) is employed to investigate the thin film morphology and study the self-assembled organizations. Solvent and concentration are found to exert a strong influence on thin film morphology. Under suitable conditions, OPEs with 7 p-dihexyloxyphenyleneethynylene repeat units are driven to form micrometer-long nanoribbons, oriented preferably along the 3-fold symmetry axes of the mica substrate. The cross section of the nanoribbons is composed of 7 molecules as evaluated by AFM characterization. On the other hand, oligomers with shorter chain lengths (n = 1, 3, and 5) produce thin films featuring globular nanoaggregates, chains consisting of elongated grains, and rods, respectively. Plausible reasons for the variation in thin film morphology are discussed, based on the results obtained from investigation of oligomer chain length, solvent, and concentration effects. A subtle balance among molecular size and physicochemical properties of solute molecules, solvent molecules, and substrate is crucial for the formation of desired structures. Among them, oligomer chain length plays a key role in thin film morphology, and the critical number of repeat units in OPE/poly(p-phenyleneethynylene) molecules for the formation of nanoribbon structures with a molecular cross section is supposed to be 8 or 9.


Assuntos
Alcinos/química , Éteres/química , Microscopia de Força Atômica/métodos , Nanotecnologia , Polietilenos/química , Estrutura Molecular , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...