Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(24): 31636-31647, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38848140

RESUMO

Rigid thermal protection materials such as ultra-high-temperature ceramics are desirable for applications in aerospace vehicles, but few materials can currently satisfy the emerging high-temperature sealing requirements for dynamic gaps created by the mismatch of the thermal expansion of different protection layers. Here, we design and fabricate a flexible biomimetic anisotropic deformation composite by multilayer cocuring onto fiber fabrics. It displays superior anisotropic deformation, whose longitudinal expansion ratio is 48 times greater than the transverse expansion ratio at specific temperatures. Furthermore, the ordered carbon structure created by transition-metal-catalyzed graphitization and the C/Si synergistic effect resulting from the combination of biomimetic fiber fabrics and SR enable the in situ formation of a high-temperature-resistant SiC crystalline phase within the char layer, ultimately resulting in exceptional thermal protection properties. By constructing hollow structures in situ, the back temperature of the composite, which is only 4.33 mm thick, is stabilized at 140 °C under the condition of continuous butane flame ablation (1300 °C) for 420 s. Multilayer structure and flexible features can facilitate large-scale preparation and arbitrary cutting and bending, adapted to different thermal protection areas.

2.
ACS Appl Mater Interfaces ; 15(12): 15986-15997, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36930790

RESUMO

Based on the strategy of killing two birds with one stone, we introduce thermally expandable microspheres into a silicone rubber matrix to fabricate temperature-responsive controllable deformation materials, which exhibit intelligent deformation properties as well as enhanced thermal protection performance, for dynamic thermal protection in the next-generation morphing aircrafts. The formation of hollow structures endows the material with intelligent thermal management ability and makes the thermal conductivity controllable, meeting the requirements of rapid deformation and excellent thermal insulation. The dimensions of the material adaptively expand with increasing temperature, and a constant 50N force can be provided to ensure reliable sealing. Moreover, benefiting from the synergistic effect of the hollow structure and zinc borate in the ceramization process of the silicone rubber, the 10 mm thick material can reduce the temperature from 2000 to 63 °C, and the mass ablation rate is only 4.8 mg/s. To broaden the application of our material, a sensor with a sandwich structure composed of different functional layers is designed. It is pleasantly surprising to observe that the sensor can provide real-time remote warning of fire and overheating sites with a response time as short as 1 s. This synergistic strategy opens a new possibility to fabricate intelligent thermal protection materials.

3.
Polymers (Basel) ; 14(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080549

RESUMO

In this work, the influences of alumina (Al2O3) particle size and loading concentration on the properties of injection molded polycarbonate (PC)/boron nitride (BN)/Al2O3 composites were systematically studied. Results indicated that both in-plane and through-plane thermal conductivity of the ternary composites were significantly improved with the addition of spherical Al2O3 particles. In addition, the thermal conductivity of polymer composites increased significantly with increasing Al2O3 concentration and particle size, which were related to the following factors: (1) the presence of spherical Al2O3 particles altered the orientation state of flaky BN fillers that were in close proximity to Al2O3 particles (as confirmed by SEM observations and XRD analysis), which was believed crucial to improving the through-plane thermal conductivity of injection molded samples; (2) the presence of Al2O3 particles increased the filler packing density by bridging the uniformly distributed BN fillers within PC substrate, thereby leading to a significant enhancement of thermal conductivity. The in-plane and through-plane thermal conductivity of PC/50 µm-Al2O3 40 wt%/BN 20 wt% composites reached as high as 2.95 and 1.78 W/mK, which were 1183% and 710% higher than those of pure PC, respectively. The prepared polymer composites exhibited reasonable mechanical performance, and excellent electrical insulation properties and processability, which showed potential applications in advanced engineering fields that require both thermal conduction and electrical insulation properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...