Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 375: 110387, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36758888

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by chronic neuroinflammation with amyloid beta-protein deposition and hyperphosphorylated tau protein. The typical clinical manifestation of AD is progressive memory impairment, and AD is considered a multifactorial disease with various etiologies (genetic factors, aging, lifestyle, etc.) and complicated pathophysiological processes. Previous research identified that neuroinflammation and typical microglial activation are significant mechanisms underlying AD, resulting in dysfunction of the nervous system and progression of the disease. Ferroptosis is a novel modality involved in this process. As an iron-dependent form of cell death, ferroptosis, characterized by iron accumulation, lipid peroxidation, and irreversible plasma membrane disruption, promotes AD by accelerating neuronal dysfunction and abnormal microglial activation. In this case, disturbances in brain iron homeostasis and neuronal ferroptosis aggravate neuroinflammation and lead to the abnormal activation of microglia. Abnormally activated microglia release various pro-inflammatory factors that aggravate the dysregulation of iron homeostasis and neuroinflammation, forming a vicious cycle. In this review, we first introduce ferroptosis, microglia, AD, and their relationship. Second, we discuss the nonnegligible role of ferroptosis in the abnormal microglial activation involved in the chronic neuroinflammation of AD to provide new ideas for the identification of potential therapeutic targets for AD.


Assuntos
Doença de Alzheimer , Ferroptose , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias
2.
Dis Markers ; 2023: 9956950, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36660202

RESUMO

Diabetic cardiovascular autonomic neuropathy (DCAN) is a common complication of diabetes mellitus which brings about high mortality, high morbidity, and large economic burden to the society. Compensatory tachycardia after myocardial ischemia caused by DCAN can increase myocardial injury and result in more damage to the cardiac function. The inflammation induced by hyperglycemia can increase P2X7 receptor expression in the superior cervical ganglion (SCG), resulting in nerve damage. It is proved that inhibiting the expression of P2X7 receptor at the superior cervical ganglion can ameliorate the nociceptive signaling dysregulation induced by DCAN. However, the effective drug used for decreasing P2X7 receptor expression has not been found. Schisandrin B is a traditional Chinese medicine, which has anti-inflammatory and antioxidant effects. Whether Schisandrin B can decrease the expression of P2X7 receptor in diabetic rats to protect the cardiovascular system was investigated in this study. After diabetic model rats were made, Schisandrin B and shRNA of P2X7 receptor were given to different groups to verify the impact of Schisandrin B on the expression of P2X7 receptor. Pathological blood pressure, heart rate, heart rate variability, and sympathetic nerve discharge were ameliorated after administration of Schisandrin B. Moreover, the upregulated protein level of P2X7 receptor, NLRP3 inflammasomes, and interleukin-1ß in diabetic rats were decreased after treatment, which indicates that Schisandrin B can alleviate the chronic inflammation caused by diabetes and decrease the expression levels of P2X7 via NLRP3. These findings suggest that Schisandrin B can be a potential therapeutical agent for DCAN.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Ratos , Animais , Gânglio Cervical Superior/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ratos Sprague-Dawley , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/genética , Inflamação/metabolismo
3.
Mol Neurobiol ; 59(9): 5504-5515, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35731374

RESUMO

Diabetic neuropathic pain (DNP) is a common complication of diabetes, and its complicated pathogenesis, as well as clinical manifestations, has brought great trouble to clinical treatment. The spinal cord is an important part of regulating the occurrence and development of DNP. Spinal microglia can regulate the activity of spinal cord neurons and have a regulatory effect on chronic pain. P2Y12 receptor is involved in DNP. P2Y14 and P2Y12 receptors belong to the Gi subtype of P2Y receptors, but there is no report that the P2Y14 receptor is involved in DNP. Closely related to many human diseases, the dysregulation of long noncoding RNA (lncRNA) has the effect of promoting or inhibiting the occurrence and development of diseases. The aim of this research is to investigate the function of the spinal cord P2Y14 receptor in type 2 DNP and to understand the function as well as the possible mechanism of lncRNA-UC.25 + (UC.25 +) in rat spinal cord P2Y14 receptor-mediated DNP. Our results showed that P2Y14 shRNA can reduce the expression of P2Y14 in DNP rats, thereby restraining the activation of microglia, decreasing the expression of inflammatory factors and the level of p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation. At the same time, UC.25 + shRNA can downregulate the expression of the P2Y14 receptor, reduce the release of inflammatory factors, and diminish the p38 MAPK phosphorylation, indicating that UC.25 + can alleviate spinal cord P2Y14 receptor-mediated DNP. The RNA immunoprecipitation result showed that UC.25 + enriched signal transducers and activators of transcription1 (STAT1) and positively regulated its expression. The chromatin immunoprecipitation result indicated that STAT1 combined with the promoter region of the P2Y14 receptor and positively regulated the expression of the P2Y14 receptor. Therefore, we infer that UC.25 + may alleviate DNP in rats by regulating the expression of the P2Y14 receptor in spinal microglia via STAT1.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Neuralgia , RNA Longo não Codificante , Animais , Diabetes Mellitus/metabolismo , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/genética , Humanos , Microglia/metabolismo , Neuralgia/complicações , Neuralgia/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT1/metabolismo , Medula Espinal/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Front Pharmacol ; 13: 873090, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529431

RESUMO

Diabetes mellitus (DM), an emerging chronic epidemic, contributes to mortality and morbidity around the world. Diabetic cardiac autonomic neuropathy (DCAN) is one of the most common complications associated with DM. Previous studies have shown that satellite glial cells (SGCs) in the superior cervical ganglia (SCG) play an indispensable role in DCAN progression. In addition, it has been shown that purinergic neurotransmitters, as well as metabotropic GPCRs, are involved in the pathophysiological process of DCAN. Furthermore, one traditional Chinese medicine, naringin may potently alleviate the effects of DCAN. Ferroptosis may be involved in DCAN progression. However, the role of naringin in DCAN as well as its detailed mechanism requires further investigation. In this research, we attempted to identify the effect and relevant mechanism of naringin in DCAN mitigation. We observed that compared with those of normal subjects, there were significantly elevated expression levels of P2Y14 and IL-1ß in diabetic rats, both of which were remarkably diminished by treatment with either P2Y14 shRNA or naringin. In addition, abnormalities in blood pressure (BP), heart rate (HR), heart rate variability (HRV), sympathetic nerve discharge (SND), and cardiac structure in the diabetic model can also be partially returned to normal through the use of those treatments. Furthermore, a reduced expression of NRF2 and GPX4, as well as an elevated level of ROS, were detected in diabetic cases, which can also be improved with those treatments. Our results showed that naringin can effectively relieve DCAN mediated by the P2Y14 receptor of SGCs in the SCG. Moreover, the NRF2/GPX4 pathway involved in ferroptosis may become one of the principal mechanisms participating in DCAN progression, which can be modulated by P2Y14-targeted naringin and thus relieve DCAN. Hopefully, our research can supply one novel therapeutic target and provide a brilliant perspective for the treatment of DCAN.

6.
Sci Rep ; 9(1): 7909, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-31133659

RESUMO

As an intractable health threat, neuropathic pain is now a key problem in clinical therapy, which can be caused by lesions affecting the peripheral nervous systems. 1,8-cineole is a natural monoterpene cyclic ether present in eucalyptus and has been reported to exhibit anti-inflammatory and antioxidant effects. Research has shown that 1,8-cineole inhibits P2X3 receptor-mediated neuropathic pains in dorsal root ganglion. The P2X2 and P2X3 receptors participate in the transmission of algesia and nociception information by primary sensory neurons. In the present study, We thus investigated in the spinal cord dorsal horn whether 1,8-cineole inhibits the expression of P2X2 receptor-mediated neuropathic pain. This study used rats in five random groups: group of chronic constriction injury(CCI) with dimethysulfoxide control (CCI + DMSO); group of CCI; sham group(Sham); group of CCI treated with a low dose 1,8-cineole (CCI + 50 mg/kg); group of CCI with a high dose (CCI + 100 mg/kg). We observed the effects of 1,8-cineole on thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT). We examined P2X2 receptors mRNA change in rat spinal cord dorsal horn by In situ nucleic acid hybridization(ISH) and Quantitative realtime polymerase chain reaction (qRT-PCR) methods. Western Blotting and Immunohistochemical staining methods were used to observe P2X2 receptor protein expressions in the rat spinal cord dorsal horn. It demonstrated that oral administration of 1,8-cineole inhibits over-expression of P2X2 receptor protein and mRNA in the spinal cord and dorsal horn in the CCI rats. And the study explored new methods for the prevention and treatment of neuropathic pain.


Assuntos
Eucaliptol/farmacologia , Neuralgia/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X2/metabolismo , Compressão da Medula Espinal/complicações , Administração Oral , Animais , Técnicas de Observação do Comportamento , Modelos Animais de Doenças , Eucaliptol/uso terapêutico , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Neuralgia/diagnóstico , Neuralgia/etiologia , Neuralgia/patologia , Nociceptividade/efeitos dos fármacos , Medição da Dor , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , RNA Mensageiro/metabolismo , Ratos , Receptores Purinérgicos P2X2/genética , Compressão da Medula Espinal/tratamento farmacológico , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/lesões , Corno Dorsal da Medula Espinal/metabolismo
7.
Front Pharmacol ; 9: 593, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29950989

RESUMO

Aim: In this study, we investigated whether andrographolide (Andro) can alleviate neuropathic pain induced by HIV gp120 plus ddC treatment and the mechanism of its action. Methods: The paw withdrawal threshold and the paw withdrawal latency were observed to assess pain behaviors in all groups of the rats, including control group, control combined with Andro treatment group, sham group, gp120 combined with ddC treatment group, gp120 plus ddC combined with A438079 treatment group, and gp120 plus ddC combined with Andro treatment by intrathecally injecting at a dose of 25 µg/20 µl group. The protein expression levels of the P2X7 receptor, tumor necrosis factor-α-receptor (TNFα-R), interleukin-1ß (IL-1ß), IL-10, phospho-extracellular regulated protein kinases (ERK) (p-ERK) in the L4-L6 dorsal root ganglia (DRG) were measured by western blotting. Real-time quantitative polymerase chain reaction was used to test the mRNA expression level of the P2X7 receptor. Double-labeling immunofluorescence was used to identify the co-localization of the P2X7 receptor with glial fibrillary acidic protein (GFAP) in DRG. Molecular docking was performed to identify whether the Andro interacted perfectly with the rat P2X7 (rP2X7) receptor. Results: Andro attenuated the mechanical and thermal hyperalgesia in gp120+ddC-treated rats and down-regulated the P2X7 receptor mRNA and protein expression in the L4-L6 DRGs of gp120+ddC-treated rats. Additionally, Andro simultaneously decreased the expression of TNFα-R and IL-1ß protein, increased the expression of IL-10 protein in L4-L6 DRGs, and inhibited the activation of ERK signaling pathways. Moreover, Andro decreased the co-expression of GFAP and the P2X7 receptor in the SGCs of L4-L6 DRG on 14th day after surgery. Conclusion: Andro decreased the hyperalgesia induced by gp120 plus ddC.

8.
Purinergic Signal ; 14(1): 47-58, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29159762

RESUMO

The direct neurotoxicity of HIV and neurotoxicity of combination antiretroviral therapy medications both contribute to the development of neuropathic pain. Activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRG) plays a crucial role in mechanical and thermal hyperalgesia. The P2Y12 receptor expressed in SGCs of the DRG is involved in pain transmission. In this study, we explored the role of the P2Y12 receptor in neuropathic pain induced by HIV envelope glycoprotein 120 (gp120) combined with ddC (2',3'-dideoxycytidine). A rat model of gp120+ddC-induced neuropathic pain was used. Peripheral nerve exposure to HIV-gp120+ddC increased mechanical and thermal hyperalgesia in gp120+ddC-treated model rats. The gp120+ddC treatment increased expression of P2Y12 receptor mRNA and protein in DRG SGCs. In primary cultured DRG SGCs treated with gp120+ddC, the levels of [Ca2+]i activated by the P2Y12 receptor agonist 2-(Methylthio) adenosine 5'-diphosphate trisodium salt (2-MeSADP) were significantly increased. P2Y12 receptor shRNA treatment inhibited 2-MeSADP-induced [Ca2+]i in primary cultured DRG SGCs treated with gp120+ddC. Intrathecal treatment with a shRNA against P2Y12 receptor in DRG SGCs reduced the release of pro-inflammatory cytokines, decreased phosphorylation of p38 MAPK in the DRG of gp120+ddC-treated rats. Thus, downregulating the P2Y12 receptor relieved mechanical and thermal hyperalgesia in gp120+ddC-treated rats.


Assuntos
Proteína gp120 do Envelope de HIV , Neuralgia/metabolismo , Neuroglia/metabolismo , Receptores Purinérgicos P2/metabolismo , Zalcitabina/toxicidade , Animais , Fármacos Anti-HIV/toxicidade , Gânglios Espinais/metabolismo , Infecções por HIV/complicações , Hiperalgesia/metabolismo , Hiperalgesia/virologia , Masculino , Neuralgia/etiologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2Y12 , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA