Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 10(6): 1276-1282, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38947197

RESUMO

Directing groups guide substitution patterns in organic synthetic schemes, but little is known about pathways to control reactivity patterns, such as regioselectivity, in complex inorganic systems such as bioinorganic cofactors or extended surfaces. Interadsorbate effects are known to encode surface reactivity patterns in inorganic materials, modulating the location and binding strength of ligands. However, owing to limited experimental resolution into complex inorganic structures, there is little opportunity to resolve these effects on the atomic scale. Here, we utilize an atomically precise Fe/Co/Se nanocluster platform, [Fe3(L)2Co6Se8L'6]+ ([1(L)2]+; L = CN t Bu, THF; L' = Ph2PN(-)Tol), in which allosteric interadsorbate effects give rise to pronounced site-differentiation. Using a combination of spectroscopic techniques and single-crystal X-ray diffractometry, we discover that coordination of THF at the ligand-free Fe site in [1(CN t Bu)2]+ sets off a domino effect wherein allosteric through-cluster interactions promote the regioselective dissociation of CN t Bu at a neighboring Fe site. Computational analysis reveals that this active site correlation is a result of delocalized Fe···Se···Co···Se covalent interactions that intertwine edge sites on the same cluster face. This study provides an unprecedented atom-scale glimpse into how interfacial metal-support interactions mediate a collective and regiospecific path for substrate exchange across multiple active sites.

2.
Inorg Chem ; 62(23): 8789-8793, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37227222

RESUMO

Here, we investigate the stereoelectronic requirements of a family of Fe/Co6Se8 molecular clusters to achieve a Goldilocks regime of substrate affinity for the catalytic coupling of tosyl azide and tert-butyl isocyanide. The reactivity of a catalytically competent iron-nitrenoid intermediate, observed in situ, is explored toward nitrene transfer and hydrogen-atom abstraction. The dual role of isocyanide, which, on the one hand, prevents catalyst degradation but, in large amounts, slows down reactivity, is exposed. The impact of distal changes (the number of neighboring active sites and the identity of supporting ligands) on the substrate affinity, electronic properties, and catalytic activity is investigated. Overall, the study reveals that the dynamic, push-pull interactions between the substrate (tBuNC), active site (Fe), and support (Co6Se8) create a regime where increased substrate activation occurs with facile dissociation.

3.
Dalton Trans ; 50(2): 599-611, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33403375

RESUMO

Exposure of 10π-electron benzazaphosphole 1 to HCl, followed by nucleophilic substitution with the Grignard reagent BrMgCCPh afforded alkynyl functionalized 3 featuring an exocyclic -C[triple bond, length as m-dash]C-Ph group with an elongated P-C bond (1.7932(19) Å). Stoichiometric experiments revealed that treatment of trans-Pd(PEt3)2(Ar)(i) (Ar = p-Me (C) or p-F (D)) with 3 generated trans-Pd(PEt3)2(Ar)(CCPh) (Ar = p-Me (E) or p-F (F)), 5, which is the result of ligand exchange between P-I byproduct 4 and C/D, and the reductively eliminated product (Ar-C[triple bond, length as m-dash]C-Ph). Cyclic voltammetry studies showed and independent investigations confirmed 4 is also susceptible to redox processes including bimetallic oxidative addition to Pd(0) to give Pd(i) dimer 6-Pd2-(P(t-Bu)3)2 and reduction to diphosphine 7. During catalysis, we hypothesized that this unwanted reactivity could be circumvented by employing a source of fluoride as an additive. This was demonstrated by conducting a Sonogashira-type reaction between 1-iodotoluene and 3 in the presence of 10 mol% Na2PdCl4, 20 mol% P(t-Bu)Cy2, and 5 equiv. of tetramethylammonium fluoride (TMAF), resulting in turnover and the isolation of Ph-C[triple bond, length as m-dash]C-(o-Tol) as the major product.


Assuntos
Alcinos/química , Compostos Organofosforados/química , Paládio/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...