Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38932449

RESUMO

Artemisia argyi is a perennial herb native to East Asia. It is an important traditional Chinese medicinal plant known for its strong flavor and medicinal effects. It is rich in active ingredients and has a wide range of biological activities, including anti-inflammatory, antioxidant, and immune regulation properties. From May to July in 2023, a serious leaf rot outbreak occurred on A. argyi in several farms (approximately 200 acres) in Tanghe county (32°46'44" N, 112°43'13" E), Henan Province, China. The incidence rate reached 65% (n=200). Pale yellow spots (1-2 cm in diameter) first appeared on the leaves, then expanded to form irregular yellowish-brown lesions, eventually causing the entire leaves to wither. Diseased leaves (30) were collected and cut into 5 x 5 mm2 pieces in the areas between infected and healthy tissues. The excised plant tissues were sterilized in 75% ethanol and 1% sodium hypochlorite solution for 30 seconds and one minute, respectively. The tissues were then rinsed with sterile water and placed on potato dextrose agar (PDA) followed by incubating at 25 °C for 3 days. The isolated strains belonged to the genera Fusarium and Alternaria. After pathogenicity verification, 25 purified Fusarium strains were obtained. Three representative strains (AC-Q, AC-X, AC-Y) from different regions were used for further studies. Each strain formed abundant aerial mycelium that was initially white and later developed into purple pigments. Aerial conidiophores were sparsely branched, terminating with verticillate phialides. Macroconidia were slender, straight, and measured 21.8 to 47.5 × 3.1 to 4.4 µm, with two to four septa. Microconidia were clavate and measured 8.31 to 11.6 × 2.1 to 3.5 µm. Morphological characteristics were consistent with the species description of Fusarium verticillioides (Sacc.) Nirenberg 1976 (Leslie and Summerell, 2006). The rDNA internal transcribed spacer (ITS), ß-tubulin gene (tub2), translation elongation factor 1-alpha gene (tef1), calmodulin (cmdA), RNA polymerase II largest subunit (rpb1) and RNA polymerase II second largest subunit (rpb2) were amplified for molecular identification (O'Donnell et al., 2022). The sequences were deposited in GenBank with accession Nos. OR960548, OR960552, OR960555 (ITS), OR972413, OR972414, OR972415 (tub2), OR797685, OR797686, OR797687 (tef1), OR972410, OR972411, OR972412 (cmdA), PP035106, PP035107, PP035108 (rpb1), and PP035109, PP035110, PP035111 (rpb2). BLASTn analysis of AC-Q sequences exhibited 99 to 100% similarity with F. verticillioides sequences (strains CBS 576.78) MT010888 of cmdA, MT0109566 of rpb1, and MT010972 of rpb2. A phylogenetic tree was constructed with concatenated sequences (tub2, tef1, cmdA, rpb1, rpb2), alongside the sequences of the type strains using the neighbor-joining method. The three strains formed a clade with the type strain CBS 576.78 of F. verticillioides, and were separated from other Fusarium spp. These morphological and molecular identifications indicated that the pathogen was F. verticillioides. Pathogenicity was tested on 10 healthy 2-month-old potted seedlings by spraying them with a conidial suspension (106 conidia ml-1), and 5 seedlings were sprayed with sterilized water as a control. The plants were placed in a climate incubator at 28°C and a relative humidity of approximately 90%. Ten days after seedling inoculation, typical lesions were observed on the treated plants, except in the control group. The reisolated strains were identified as F. verticillioides by morphological and molecular characterization, fulfilling Koch's postulates. F. verticillioides is known to cause Fusarium ear rot on maize, as well as diseases on other plants in China such as Brassica rapa (Akram et al., 2020) and Schizonepeta tenuifolia (Li et al., 2024). This is the first report of F. verticillioides causing leaf rot on A. argyi worldwide. Identification of the pathogen is crucial for implementing management approaches to reduce yield losses.

2.
Plant Dis ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625692

RESUMO

Catalpa bungei originates from China. It is fast-growing and possesses a vertically aligned trunk, rendering it a commendable construction material and a significant economic species. In July 2022, a serious leaf spot occurred in the LanLake farm (surveyed area of about 700 acres) in Nanyang (33°3'23" N, 112°28'50" E), Henan Province, China. The incidence rate of leaf disease reached 54% (n=100). The disease initially manifested as irregular round spots with a yellowish-brown hue, subsequently extending in all directions. Later, the lesion periphery exhibited a darkening effect, leading to yellowing. Twenty diseased leaves were randomly collected and cut into small pieces at the interfaces between infected and healthy tissues. The tissues were sterilized in a solution of 75% ethanol and 1% NaClO for 30 seconds and 1 minute, respectively. After rinsing in sterile water, the pieces were placed on potato dextrose agar (PDA) plates and incubated at 25°C for 5 days. A total of 29 purified fungal strains were acquired, exhibiting comparable phenotypes in terms of morphological characteristics. Three strains (QS1-1, QS1-2, and QS1-3) were isolated for subsequent investigations. The colony exhibited abundant aerial mycelium with shades ranging from dark green to grey-brown on the reverse side. To analyze the morphological characteristics of conidia, potato carrot agar (PCA) was used as the culture medium and incubated at 25°C with a 12-hour light/dark cycle. Conidia were obclavate or spheroidal, dark brown, with 3 to 5 transverse septa, and 1 to 4 longitudinal septa, measuring 12.4 to 36.7 × 4.4 to 9.0 µm (n=100), with conical beak lengths ranging from 0 to 4.3 µm. These morphological traits suggested that the pathogen shares similarities with the Alternaria species. The rDNA internal transcribed spacer (ITS), translation elongation factor 1-alpha gene (tef1), glyceraldehyde 3-phosphate dehydrogenase gene (gapdh), and RNA polymerase II second largest subunit (rpb2) were amplified for further molecular identification. The resultant sequences were submitted to GenBank with the following accession numbers: OR733559, OR742124, OR761873 (ITS), OR939796, OR939797, OR939798 (tef1), OR939801, OR939802, OR939803 (gapdh), and PP054846, PP054847, PP054848 (rpb2). A Phylogenetic tree was constructed of combined genes (ITS, tef1, gapdh, and rpb2) of sequences, alongside the sequences of the type strains by the neighbor-joining method. The three strains formed a clade with the strains CBS 121456 of Alternaria alternata in phylogenetic trees, being separated from other Alternaria spp. The morphological features and molecular analyses supported the strains as members of Alternaria alternata (Woudenberg et al. 2015). To validate pathogenicity, a conidial suspension (106 conidia ml-1) of all three strains was inoculated onto three healthy leaves of five seedlings, with 50 µl of inoculum absorbed with cotton balls. Another group of five plants received sterile water as a control. All plants were incubated in a climate chamber at 28°C and 90% relative humidity. Four days post-inoculation, lesions resembling natural phenomena were observed, whereas control plants showed no symptoms. Subsequent reisolation produced cultures that were morphologically and molecularly identical to the original strains, fulfilling Koch's postulates. Stem canker of C. bungei caused by Phytophthora nicotianae has been reported in China (Chang et al. 2022). This is the first report of A. alternata causing leaf spots on C. bungei in China. Further research is required on management options to control this disease and the host range still needs to be clarified for accurate disease management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...