Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276027

RESUMO

The diversity of nematode-trapping fungi (NTF) holds significant theoretical and practical implications in the study of adaptive evolution and the bio-control of harmful nematodes. However, compared to terrestrial ecosystems, research on aquatic NTF is still in its early stages. During a survey of NTF in six watersheds in Yunnan Province, China, we isolated 10 taxa from freshwater sediment. Subsequent identification based on morphological and multigene (ITS, TEF1-α, and RPB2) phylogenetic analyses inferred they belong to five new species within Arthrobotrys. This paper provides a detailed description of these five novel species (Arthrobotrys cibiensis, A. heihuiensis, A. jinshaensis, A. yangbiensis, and A. yangjiangensis), contributing novel insights for further research into the diversity of NTF and providing new material for the biological control of aquatic harmful nematodes. Additionally, future research directions concerning aquatic NTF are also discussed.

2.
J Fungi (Basel) ; 9(7)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37504724

RESUMO

Nematode-trapping fungi are widely studied due to their unique morphological structure, survival strategy, and potential value in the biological control of harmful nematodes. During the identification of carnivorous fungi preserved in our laboratory, five novel nematode-trapping fungi were established and placed in the genera Arthrobotrys and Drehslerella based on morphological and multigene (ITS, TEF, and RPB2) phylogenetic analyses. A. hengjiangensis sp. nov. and A. weixiensis sp. nov. are characterized by producing adhesive networks to catch nematodes. Dr. pengdangensis sp. nov., Dr. tianchiensis sp. nov., and Dr. yunlongensis sp. nov. are characterized by producing constricting rings. Morphological descriptions, illustrations, taxonomic notes, and phylogenetic analysis are provided for all new taxa; a key for Drechslerella species is listed; and some deficiencies in the taxonomy and evolution study of nematode-trapping fungi are also discussed herein.

3.
J Fungi (Basel) ; 9(7)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37504743

RESUMO

Conidia fusion (CF) is a commonly observed structure in fungi. However, it has not been systematically studied. This study examined 2457 strains of nematode-trapping fungi (NTF) to explore the species specificity, physiological period, and physiological significance of CF. The results demonstrated that only six species of Arthrobotrys can form CF among the sixty-five tested NTF species. The studies on the model species Arthrobotrys oligospora (DL228) showed that CF occurred in both shed and unshed plus mature and immature conidia. Additionally, the conidia fusion rate (CFR) increased significantly with the decrease of nutrient concentration in habitats. The studies on the conidia fusion body (CFB) produced by A. oligospora (DL228) revealed that the more conidia contained in the CFB, the faster and denser the mycelia of the CFB germinated in weak nutrient medium and soil plates. On the one hand, rapid mycelial extension is beneficial for the CFB to quickly find new nutrient sources in habitats with uneven nutrient distribution. On the other hand, dense mycelium increases the contact area with the environment, improving the nutrient absorption efficiency, which is conducive to improving the survival rate of conidia in the weak nutrient environment. In addition, all species that form CF produce smaller conidia. Based on this observation, CF may be a strategy to balance the defects (nutrient deficiency) caused by conidia miniaturization.

4.
J Fungi (Basel) ; 9(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37108905

RESUMO

The evolution of carnivorous fungi in deep time is still poorly understood as their fossil record is scarce. The approximately 100-million-year-old Cretaceous Palaeoanellus dimorphus is the earliest fossil of carnivorous fungi ever discovered. However, its accuracy and ancestral position has been widely questioned because no similar species have been found in modern ecosystems. During a survey of carnivorous fungi in Yunnan, China, two fungal isolates strongly morphologically resembling P. dimorphus were discovered and identified as a new species of Arthrobotrys (Orbiliaceae, Orbiliomycetes), a modern genus of carnivorous fungi. Phylogenetically, Arthrobotrys blastospora sp. nov. forms a sister lineage to A. oligospora. A. blastospora catches nematodes with adhesive networks and produces yeast-like blastospores. This character combination is absent in all other previously known modern carnivorous fungi but is strikingly similar to the Cretaceous P. dimorphus. In this paper, we describe A. blastospora in detail and discuss its relationship to P. dimorphus.

5.
Ecol Evol ; 12(12): e9634, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36540080

RESUMO

The passive sampling hypothesis is one of the most important hypotheses used to explain the mechanism of species-area relationships (SAR) formation. This hypothesis has not yet been experimentally validated due to the confusion between passive sampling (a larger area may support more colonists when fully sampled) and sampling effects (more sampling effort will result in increased species richness when sampling is partial). In this study, we created an open microcosm system with homogeneous habitat, consistent total resources, and biodiversity background using Chinese paocai soup, a fermented vegetable, as a substrate. We made efforts to entirely exclude the influence of sampling effects and to exclusively obtain microorganisms from dispersal using microcosm and high-throughput sequencing techniques. However, in this study, passive sampling based on dispersal failed to shape SAR, and community differences were predominantly caused by species replacement, with only minor contributions from richness differences. Ecological processes including extinction and competitive exclusion, as well as underlying factors like temporal scales and the small island effects, are very likely to have been involved in the studied system. To elucidate the mechanism of SAR development, future studies should design experiments to validate the involvement of dispersal independently.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...