Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Biol Macromol ; 274(Pt 1): 133269, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906353

RESUMO

In order to fulfill the demands for degradability, a broad working range, and heightened sensitivity in flexible sensors, biodegradable polyurethane (BTPU) was synthesized and combined with CNTs to produce BTPU/CNTs coated cotton fabric using an ultrasonic-assisted inkjet printing process. The synthesized BTPU displayed a capacity for degradation in a phosphate buffered saline solution, resulting in a weight loss of 25 % after 12 weeks of degradation. The BTPU/CNTs coated cotton fabric sensor achieved an extensive strain sensing range of 0-137.5 %, characterized by high linearity and a notable sensitivity (gauge factor (GF) of 126.8). Notably, it demonstrated a low strain detection limit (1 %), rapid response (within 280 ms), and robust durability, enabling precise monitoring of both large and subtle human body movements such as finger, wrist, neck, and knee bending, as well as swallowing. Moreover, the BTPU/CNTs coated cotton fabric exhibited favorable biocompatibility with human epidermis, enabling potential applications as wearable skin-contact sensors. This work provides insight into the development of degradable and high sensing performance sensors suitable for applications in electronic skins and health monitoring devices.

2.
Magn Reson Med ; 91(6): 2579-2596, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38192108

RESUMO

PURPOSE: This study aims to evaluate two distinct approaches for fiber radius estimation using diffusion-relaxation MRI data acquired in biomimetic microfiber phantoms that mimic hollow axons. The methods considered are the spherical mean power-law approach and a T2-based pore size estimation technique. THEORY AND METHODS: A general diffusion-relaxation theoretical model for the spherical mean signal from water molecules within a distribution of cylinders with varying radii was introduced, encompassing the evaluated models as particular cases. Additionally, a new numerical approach was presented for estimating effective radii (i.e., MRI-visible mean radii) from the ground truth radii distributions, not reliant on previous theoretical approximations and adaptable to various acquisition sequences. The ground truth radii were obtained from scanning electron microscope images. RESULTS: Both methods show a linear relationship between effective radii estimated from MRI data and ground-truth radii distributions, although some discrepancies were observed. The spherical mean power-law method overestimated fiber radii. Conversely, the T2-based method exhibited higher sensitivity to smaller fiber radii, but faced limitations in accurately estimating the radius in one particular phantom, possibly because of material-specific relaxation changes. CONCLUSION: The study demonstrates the feasibility of both techniques to predict pore sizes of hollow microfibers. The T2-based technique, unlike the spherical mean power-law method, does not demand ultra-high diffusion gradients, but requires calibration with known radius distributions. This research contributes to the ongoing development and evaluation of neuroimaging techniques for fiber radius estimation, highlights the advantages and limitations of both methods, and provides datasets for reproducible research.


Assuntos
Imagem de Difusão por Ressonância Magnética , Modelos Teóricos , Imagem de Difusão por Ressonância Magnética/métodos , Axônios , Microscopia , Neuroimagem
3.
ACS Appl Mater Interfaces ; 15(25): 30849-30858, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37326608

RESUMO

With the rapid development of the economy and technology, intelligent wearable devices have gradually entered public life. Flexible sensors, as the main component of wearable devices, have been widely concerned. However, traditional flexible sensors need an external power supply, lacking flexibility and sustainable power supply. In this study, structured poly(vinylidene fluoride) (PVDF)-based composite nanofiber membranes doped with different mass fractions of MXene and zinc oxide (ZnO) were prepared by electrospinning and were then assembled to flexible self-powered friction piezoelectric sensors. The addition of MXene and ZnO endowed PVDF nanofiber membranes with better piezoelectric properties. The structured PVDF/MXene-PVDF/ZnO (PM/PZ) nanofiber membranes with a double-layer structure, interpenetrating structure, or core-shell structure could further enhance the piezoelectric properties of PVDF-based nanofiber membranes through the synergistic effects of filler doping and structural design. In particular, the output voltage of the self-powered friction piezoelectric sensor made of a core-shell PM/PZ nanofiber membrane showed a good linear relationship with the applied pressure and could produce a good piezoelectric response to the bending deformation caused by human motion.

4.
Small ; 19(33): e2207330, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37078831

RESUMO

Electrospinning technology has attracted extensive attention in recent decades and is widely used to prepare nanofiber membranes from hundreds of polymers. Polyvinyl formal acetal (PVFA), as a polymer with excellent properties such as high strength and heat resistance, is not reported on the electrospun water treatment membrane. In this paper, the preparation process of electrospun PVFA nanofiber membrane is optimized, and the effect of sodium chloride (NaCl) addition on the physical and mechanical properties and microfiltration performance of nanofiber membrane is also explored. And the hydrophobic PVFA nanofiber filter layer is then combined with a hydrophilic nonwoven support layer to construct a composite micro/nanofiber membrane with a pore-size gradient structure and a hydrophilic/hydrophobic asymmetric structure. Finally, unidirectional water transport and water treatment performance are further investigated. The results show that the tensile breaking strength of the composite membrane can reach up to 37.8 MPa, the retention rate for particles with the size of 0.1-0.3 µm is 99.7%, and the water flux is 513.4 L m-2 h-1 under the hydrostatic pressure. Moreover, it still has a retention of more than 98% after three repeated uses. Therefore, the electrospun PVFA composite membrane has a great potential in microfiltration.

5.
Magn Reson Med ; 90(1): 150-165, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36941736

RESUMO

PURPOSE: Tensor-valued diffusion encoding can probe more specific features of tissue microstructure than what is available by conventional diffusion weighting. In this work, we investigate the technical feasibility of tensor-valued diffusion encoding at high b-values with q-space trajectory imaging (QTI) analysis, in the human heart in vivo. METHODS: Ten healthy volunteers were scanned on a 3T scanner. We designed time-optimal gradient waveforms for tensor-valued diffusion encoding (linear and planar) with second-order motion compensation. Data were analyzed with QTI. Normal values and repeatability were investigated for the mean diffusivity (MD), fractional anisotropy (FA), microscopic FA (µFA), isotropic, anisotropic and total mean kurtosis (MKi, MKa, and MKt), and orientation coherence (Cc ). A phantom, consisting of two fiber blocks at adjustable angles, was used to evaluate sensitivity of parameters to orientation dispersion and diffusion time. RESULTS: QTI data in the left ventricular myocardium were MD = 1.62 ± 0.07 µm2 /ms, FA = 0.31 ± 0.03, µFA = 0.43 ± 0.07, MKa = 0.20 ± 0.07, MKi = 0.13 ± 0.03, MKt = 0.33 ± 0.09, and Cc  = 0.56 ± 0.22 (mean ± SD across subjects). Phantom experiments showed that FA depends on orientation dispersion, whereas µFA was insensitive to this effect. CONCLUSION: We demonstrated the first tensor-valued diffusion encoding and QTI analysis in the heart in vivo, along with first measurements of myocardial µFA, MKi, MKa, and Cc . The methodology is technically feasible and provides promising novel biomarkers for myocardial tissue characterization.


Assuntos
Imagem de Tensor de Difusão , Coração , Humanos , Imagem de Tensor de Difusão/métodos , Coração/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Miocárdio , Ventrículos do Coração , Anisotropia
6.
Polymers (Basel) ; 15(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36772042

RESUMO

In the field of water purification, membrane separation technology plays a significant role. Electrospinning has emerged as a primary method to produce nanofiber membranes due to its straightforward, low cost, functional diversity, and process controllability. It is possible to flexibly control the structural characteristics of electrospun nanofiber membranes as well as carry out various membrane material combinations to make full use of their various properties, including high porosity, high selectivity, and microporous permeability to obtain high-performance water treatment membranes. These water separation membranes can satisfy the fast and efficient purification requirements in different water purification applications due to their high filtration efficiency. The current research on water treatment membranes is still focused on creating high-permeability membranes with outstanding selectivity, remarkable antifouling performance, superior physical and chemical performance, and long-term stability. This paper reviewed the preparation methods and properties of electrospun nanofiber membranes for water treatment in various fields, including microfiltration, ultrafiltration, nanofiltration, reverse osmosis, forward osmosis, and other special applications. Lastly, various antifouling technologies and research progress of water treatment membranes were discussed, and the future development direction of electrospun nanofiber membranes for water treatment was also presented.

7.
Nanoscale Adv ; 5(4): 1043-1059, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36798499

RESUMO

Polyvinylidene fluoride (PVDF) has been considered as a promising piezoelectric material for advanced sensing and energy storage systems because of its high dielectric constant and good electroactive response. Electrospinning is a straightforward, low cost, and scalable technology that can be used to create PVDF-based nanofibers with outstanding piezoelectric characteristics. Herein, we summarize the state-of-the-art progress on the use of filler doping and structural design to enhance the output performance of electrospun PVDF-based piezoelectric fiber films. We divide the fillers into single filler and double fillers and make comments on the effects of various dopant materials on the performance and the underlying mechanism of the PVDF-based piezoelectric fiber film. The effects of highly oriented structures, core-shell structures, and multilayer composite structures on the output properties of PVDF-based piezoelectric nanofibers are discussed in detail. Furthermore, the perspectives and opportunities for PVDF piezoelectric nanofibers in the fields of health care, environmental monitoring, and energy collection are also discussed.

8.
Polym Adv Technol ; 34(8): 2573-2584, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38505514

RESUMO

Hollow polymer microfibers with variable microstructural and hydrophilic properties were proposed as building elements to create axon-mimicking phantoms for validation of diffusion tensor imaging (DTI). The axon-mimicking microfibers were fabricated in a mm-thick 3D anisotropic fiber strip, by direct jet coaxial electrospinning of PCL/polysiloxane-based surfactant (PSi) mixture as shell and polyethylene oxide (PEO) as core. Hydrophilic PCL-PSi fiber strips were first obtained by carefully selecting appropriate solvents for the core and appropriate fiber collector rotating and transverse speeds. The porous cross-section and anisotropic orientation of axon-mimicking fibers were then quantitatively evaluated using two ImageJ plugins-nearest distance (ND) and directionality based on their scanning electron microscopy (SEM) images. Third, axon-mimicking phantom was constructed from PCL-PSi fiber strips with variable porous-section and fiber orientation and tested on a 3T clinical MR scanner. The relationship between DTI measurements (mean diffusivity [MD] and fractional anisotropy [FA]) of phantom samples and their pore size and fiber orientation was investigated. Two key microstructural parameters of axon-mimicking phantoms including normalized pore distance and dispersion of fiber orientation could well interpret the variations in DTI measurements. Two PCL-PSi phantom samples made from different regions of the same fiber strips were found to have similar MD and FA values, indicating that the direct jet coaxial electrospun fiber strips had consistent microstructure. More importantly, the MD and FA values of the developed axon-mimicking phantoms were mostly in the biologically relevant range.

9.
Biosensors (Basel) ; 12(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36551131

RESUMO

Lactate, a crucial product of the anaerobic metabolism of carbohydrates in the human body, is of enormous significance in the diagnosis and treatment of diseases and scientific exercise management. The level of lactate in the bio-fluid is a crucial health indicator because it is related to diseases, such as hypoxia, metabolic disorders, renal failure, heart failure, and respiratory failure. For critically ill patients and those who need to regularly control lactate levels, it is vital to develop a non-invasive wearable sensor to detect lactate levels in matrices other than blood. Due to its high sensitivity, high selectivity, low detection limit, simplicity of use, and ability to identify target molecules in the presence of interfering chemicals, biosensing is a potential analytical approach for lactate detection that has received increasing attention. Various types of wearable lactate biosensors are reviewed in this paper, along with their preparation, key properties, and commonly used flexible substrate materials including polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), paper, and textiles. Key performance indicators, including sensitivity, linear detection range, and detection limit, are also compared. The challenges for future development are also summarized, along with some recommendations for the future development of lactate biosensors.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Ácido Láctico , Têxteis
10.
Nanomaterials (Basel) ; 12(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35889680

RESUMO

Strain sensors are currently limited by an inability to operate over large deformations or to exhibit linear responses to strain. Producing strain sensors meeting these criteria remains a particularly difficult challenge. In this work, the fabrication of a highly flexible strain sensor based on electrospun thermoplastic polyurethane (TPU) fibrous tubes comprising wavy and oriented fibers coated with carboxylated multiwall carbon nanotubes (CNTs) is described. By combining spraying and ultrasonic-assisted deposition, the number of CNTs deposited on the electrospun TPU fibrous tube could reach 12 wt%, which can potentially lead to the formation of an excellent conductive network with high conductivity of 0.01 S/cm. The as-prepared strain sensors exhibited a wide strain sensing range of 0-760% and importantly high linearity over the whole sensing range while maintaining high sensitivity with a GF of 57. Moreover, the strain sensors were capable of detecting a low strain (2%) and achieved a fast response time whilst retaining a high level of durability. The TPU/CNTs fibrous tube-based strain sensors were found capable of accurately monitoring both large and small human body motions. Additionally, the strain sensors exhibited rapid response time, (e.g., 45 ms) combined with reliable long-term stability and durability when subjected to 60 min of water washing. The strain sensors developed in this research had the ability to detect large and subtle human motions, (e.g., bending of the finger, wrist, and knee, and swallowing). Consequently, this work provides an effective method for designing and manufacturing high-performance fiber-based wearable strain sensors, which offer wide strain sensing ranges and high linearity over broad working strain ranges.

11.
J Funct Biomater ; 13(2)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35645266

RESUMO

Peripheral nerve injury (PNI) is a neurological disorder that causes more than 9 million patients to suffer from dysfunction of moving and sensing. Using biodegradable polymers to fabricate an artificial nerve conduit that replicates the environment of the extracellular matrix and guides neuron regeneration through the damaged sites has been researched for decades and has led to promising but primarily pre-clinical outcomes. However, few peripheral nerve conduits (PNCs) have been constructed from controllable biodegradable polymeric materials that can maintain their structural integrity or completely degrade during and after nerve regeneration respectively. In this work, a novel PNC candidate material was developed via the electrospinning of polyhydroxy butyrate/chitosan (PHB/CS) composite polymers. An SEM characterisation revealed the resultant PHB/CS nanofibres with 0, 1 and 2 wt/v% CS had less and smaller beads than the nanofibres at 3 wt/v% CS. The water contact angle (WCA) measurement demonstrated that the wettability of PHB/CS electrospun fibres was significantly improved by additional CS. Furthermore, both the thermogravimetric analysis (TGA) and differentiation scanning calorimetry (DSC) results showed that PHB/CS polymers can be blended in a single phase with a trifluoracetic solvent in all compositions. Besides, the reduction in the degradation temperature (from 286.9 to 229.9 °C) and crystallinity (from 81.0% to 52.1%) with increasing contents of CS were further proven. Moreover, we found that the degradability of the PHB/CS nanofibres subjected to different pH values rated in the order of acidic > alkaline > phosphate buffer solution (PBS). Based on these findings, it can be concluded that PHB/CS electrospun fibres with variable blending ratios may be used for designing PNCs with controlled biodegradability.

12.
Biomater Adv ; 134: 112716, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35581091

RESUMO

In this work, we develop nano-in-micro thermo-responsive microspheres as theranostic systems for anti-cancer hyperthermia. Firstly, layered double hydroxide (LDH) nanoparticles were synthesized and subsequently loaded with the chemotherapeutic agents methotrexate (MTX) or 5-fluorouracil (5FU). The drug-loaded LDH particles were then co-encapsulated with superparamagnetic iron oxide nanoparticles (SPIONs) into poly(acrylamide-co-acrylonitrile) microparticles via spray drying. The SPIONs are able to act as MRI contrast agents, thus resulting in potential theranostic formulations. Concave microparticles were observed by electron microscopy, and elemental mapping results suggest the LDH and SPION particles were homogeneously distributed inside the microparticles. In vitro dissolution tests showed that the drug was released over a prolonged period of time with the microspheres having distinct release curves at 37 and 43 °C. The relaxivity (r2) profiles were also found to be different over the temperature range 35 to 46 °C. Mathematical relationships between r2, release and temperature data were established, demonstrating that the microparticles have the potential for use in MRI-guided therapy. In vitro cell experiments revealed that the formulations permit synergistic hyperthermia-aided chemotherapy in cultured Caco-2 and A549 cells. Thus, the microparticles prepared in this work have potential as smart stimuli-responsive theranostics for hyperthermia-aided chemotherapy.


Assuntos
Hipertermia Induzida , Nanopartículas , Células CACO-2 , Sistemas de Liberação de Medicamentos/métodos , Fluoruracila/uso terapêutico , Humanos , Imageamento por Ressonância Magnética
13.
Int J Pharm ; 615: 121493, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35065209

RESUMO

Sustained and localized delivery of chemotherapeutics in postoperative cancer treatment leads to a radical improvement in prognosis and a much decreased risk of tumor recurrence. In this work, polydopamine (PDA)-coated superparamagnetic iron oxide nanoparticle (SPION)-loaded polycaprolactone and poly(lactic-co-glycolic acid) fibers were developed as a potential implant to ensure safe and sustained release of the chemotherapeutic drug methotrexate (MTX), as well as provide local contrast for magnetic resonance imaging (MRI). Fibres were prepared by co-axial electrospinning and loaded with MTX-layered double hydroxide (LDH) nanocomposites in the core, yielding organic-inorganic hybrids ranging from 1.23 to 1.48 µm in diameter. After surface coating with PDA, SPIONs were subsequently loaded on the fibre surface and found to be evenly distributed, providing high MRI contrast. In vitro drug release studies showed the PDA coated fibres gave sustained release of MTX over 18 days, and the release profile is responsive to conditions representative of the tumor microenvironment such as slightly acidic pH values or elevated concentrations of the reducing agent glutathione (GSH). In vitro studies with Caco-2 and A549 cells showed highly effective killing with the PDA coated formulations, which was further enhanced at higher levels of GSH. The fibres hence have the potential to act as an implantable drug-eluting platform for the sustained release of cytotoxic agents within a tumor site, providing a novel treatment option for post-operative cancer patients.


Assuntos
Nanocompostos , Medicina de Precisão , Células CACO-2 , Humanos , Indóis , Imageamento por Ressonância Magnética , Polímeros , Nanomedicina Teranóstica
14.
Neuroimage ; 242: 118445, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34375753

RESUMO

Microscopic diffusion anisotropy imaging using diffusion-weighted MRI and multidimensional diffusion encoding is a promising method for quantifying clinically and scientifically relevant microstructural properties of neural tissue. Several methods for estimating microscopic fractional anisotropy (µFA), a normalized measure of microscopic diffusion anisotropy, have been introduced but the differences between the methods have received little attention thus far. In this study, the accuracy and precision of µFA estimation using q-space trajectory encoding and different signal models were assessed using imaging experiments and simulations. Three healthy volunteers and a microfibre phantom were imaged with five non-zero b-values and gradient waveforms encoding linear and spherical b-tensors. Since the ground-truth µFA was unknown in the imaging experiments, Monte Carlo random walk simulations were performed using axon-mimicking fibres for which the ground truth was known. Furthermore, parameter bias due to time-dependent diffusion was quantified by repeating the simulations with tuned waveforms, which have similar power spectra, and with triple diffusion encoding, which, unlike q-space trajectory encoding, is not based on the assumption of time-independent diffusion. The truncated cumulant expansion of the powder-averaged signal, gamma-distributed diffusivities assumption, and q-space trajectory imaging, a generalization of the truncated cumulant expansion to individual signals, were used to estimate µFA. The gamma-distributed diffusivities assumption consistently resulted in greater µFA values than the second order cumulant expansion, 0.1 greater when averaged over the whole brain. In the simulations, the generalized cumulant expansion provided the most accurate estimates. Importantly, although time-dependent diffusion caused significant overestimation of µFA using all the studied methods, the simulations suggest that the resulting bias in µFA is less than 0.1 in human white matter.


Assuntos
Anisotropia , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/instrumentação , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador/instrumentação , Masculino , Método de Monte Carlo , Imagens de Fantasmas , Substância Branca/diagnóstico por imagem
15.
Magn Reson Med ; 86(3): 1514-1530, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33960501

RESUMO

PURPOSE: Recent advances in diffusion-weighted MRI provide "restricted diffusion signal fraction" and restricting pore size estimates. Materials based on co-electrospun oriented hollow cylinders have been introduced to provide validation for such methods. This study extends this work, exploring accuracy and repeatability using an extended acquisition on a 300 mT/m gradient human MRI scanner, in substrates closely mimicking tissue, that is, non-circular cross-sections, intra-voxel fiber crossing, intra-voxel distributions of pore-sizes, and smaller pore-sizes overall. METHODS: In a single-blind experiment, diffusion-weighted data were collected from a biomimetic phantom on a 3T Connectom system using multiple gradient directions/diffusion times. Repeated scans established short-term and long-term repeatability. The total scan time (54 min) matched similar protocols used in human studies. The number of distinct fiber populations was estimated using spherical deconvolution, and median pore size estimated through the combination of CHARMED and AxCaliber3D framework. Diffusion-based estimates were compared with measurements derived from scanning electron microscopy. RESULTS: The phantom contained substrates with different orientations, fiber configurations, and pore size distributions. Irrespective of one or two populations within the voxel, the pore-size estimates (~5 µm) and orientation-estimates showed excellent agreement with the median values of pore-size derived from scanning electron microscope and phantom configuration. Measurement repeatability depended on substrate complexity, with lower values seen in samples containing crossing-fibers. Sample-level repeatability was found to be good. CONCLUSION: While no phantom mimics tissue completely, this study takes a step closer to validating diffusion microstructure measurements for use in vivo by demonstrating the ability to quantify microgeometry in relatively complex configurations.


Assuntos
Biomimética , Imagem de Difusão por Ressonância Magnética , Encéfalo , Humanos , Microscopia Eletrônica de Varredura , Imagens de Fantasmas , Método Simples-Cego
16.
Bioinspir Biomim ; 16(4)2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33706299

RESUMO

Objective. The use of diffusion magnetic resonance imaging (dMRI) opens the door to characterizing brain microstructure because water diffusion is anisotropic in axonal fibres in brain white matter and is sensitive to tissue microstructural changes. As dMRI becomes more sophisticated and microstructurally informative, it has become increasingly important to use a reference object (usually called an imaging phantom) for validation of dMRI. This study aims to develop axon-mimicking physical phantoms from biocopolymers and assess their feasibility for validating dMRI measurements.Approach. We employed a simple and one-step method-coaxial electrospinning-to prepare axon-mimicking hollow microfibres from polycaprolactone-b-polyethylene glycol (PCL-b-PEG) and poly(D, L-lactide-co-glycolic) acid (PLGA), and used them as building elements to create axon-mimicking phantoms. Electrospinning was firstly conducted using two types of PCL-b-PEG and two types of PLGA with different molecular weights in various solvents, with different polymer concentrations, for determining their spinnability. Polymer/solvent concentration combinations with good fibre spinnability were used as the shell material in the following co-electrospinning process in which the polyethylene oxide polymer was used as the core material. Following the microstructural characterization of both electrospun and co-electrospun fibres using optical and electron microscopy, two prototype phantoms were constructed from co-electrospun anisotropic hollow microfibres after inserting them into water-filled test tubes.Main results. Hollow microfibres that mimic the axon microstructure were successfully prepared from the appropriate core and shell material combinations. dMRI measurements of two phantoms on a 7 tesla (T) pre-clinical scanner revealed that diffusivity and anisotropy measurements are in the range of brain white matter.Significance. This feasibility study showed that co-electrospun PCL-b-PEG and PLGA microfibre-based axon-mimicking phantoms could be used in the validation of dMRI methods which seek to characterize white matter microstructure.


Assuntos
Biomimética , Imagem de Difusão por Ressonância Magnética , Imagens de Fantasmas , Polímeros , Substância Branca
17.
J Mater Chem B ; 9(4): 939-951, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33367446

RESUMO

Electrospinning is a simple route to generate polymer-based fibres with diameters on the nano- to micron-scale. It has been very widely explored in biomedical science for applications including drug delivery systems, diagnostic imaging, theranostics, and tissue engineering. This extensive literature reveals that a diverse range of functional components including small molecule drugs, biologics, and nanoparticles can be incorporated into electrospun fibres, and it is possible to prepare materials with complex compartmentalised architectures. This perspective article briefly introduces the electrospinning technique before considering its potential applications in biomedicine. Particular attention is paid to the translation of electrospinning to the clinic, including the need to produce materials at large scale and the requirement to do so under Good Manufacturing Practice conditions. We finish with a summary of the key current challenges and future perspectives.


Assuntos
Atenção à Saúde , Técnicas Eletroquímicas , Nanopartículas/química , Humanos , Tamanho da Partícula , Propriedades de Superfície
18.
Mater Sci Eng C Mater Biol Appl ; 101: 217-227, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31029314

RESUMO

Diffusion magnetic resonance imaging (dMRI) is considered as a useful tool to study solid tumours. However, the interpretation of dMRI signal and validation of quantitative measurements of is challenging. One way to address these challenges is by using a standard reference material that can mimic tumour cell microstructure. There is a growing interest in using hollow polymeric microspheres, mainly prepared by multiple steps, as mimics of cells in healthy and diseased tissue. The present work reports on tumour cell-mimicking materials composed of hollow microspheres for application as a standard material in dMRI. These microspheres were prepared via one-step co-electrospraying process. The shell material was poly(d,l-lactic-co-glycolic acid) (PLGA) polymers with different molecule weights and/or ratios of glycolic acid-to-lactic, while the core was polyethylene glycol (PEG) or ethylene glycol. The resultant co-electrosprayed products were characterised by optical microscopy, scanning electron microscopy (SEM) and synchrotron X-ray micro-CT. These products were found to have variable structures and morphologies, e.g. from spherical particles with/without surface hole, through beaded fibres to smooth fibres, which mainly depend on PLGA composition and core materials. Only the shell material of PLGA polymer with ester terminated, Mw 50,000-75,000 g mol-1, and lactide:glycolide 85:15 formed hollow microspheres via the co-electrospraying process using the core material of 8 wt% PEG/chloroform as the core. A water-filled test object (or phantom) was designed and constructed from samples of the material generated from co-electrosprayed PLGA microspheres and tested on a 7 T MRI scanner. The preliminary MRI results provide evidence that hollow PLGA microspheres can restrict/hinder water diffusion as cells do in tumour tissue, implying that the phantom may be suitable for use as a quantitative validation and calibration tool for dMRI.


Assuntos
Imagem de Difusão por Ressonância Magnética , Eletroquímica/métodos , Microesferas , Polímeros/química , Linhagem Celular Tumoral , Humanos , Polietilenoglicóis/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Síncrotrons , Tomografia Computadorizada por Raios X
19.
Neuroimage ; 181: 395-402, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29936312

RESUMO

Grey and white matter mimicking phantoms are important for assessing variations in diffusion MR measures at a single time point and over an extended period of time. This work investigates the stability of brain-mimicking microfibre phantoms and reproducibility of their MR derived diffusion parameters. The microfibres were produced by co-electrospinning and characterized by scanning electron microscopy (SEM). Grey matter and white matter phantoms were constructed from random and aligned microfibres, respectively. MR data were acquired from these phantoms over a period of 33 months. SEM images revealed that only small changes in fibre microstructure occurred over 30 months. The coefficient of variation in MR measurements across all time-points was between 1.6% and 3.4% for MD across all phantoms and FA in white matter phantoms. This was within the limits expected for intra-scanner variability, thereby confirming phantom stability over 33 months. These specialised diffusion phantoms may be used in a clinical environment for intra and inter-site quality assurance purposes, and for validation of quantitative diffusion biomarkers.


Assuntos
Imagem de Difusão por Ressonância Magnética/normas , Substância Cinzenta/diagnóstico por imagem , Microscopia Eletrônica de Varredura , Imagens de Fantasmas/normas , Substância Branca/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Controle de Qualidade , Reprodutibilidade dos Testes , Fatores de Tempo
20.
Mater Des ; 137: 394-403, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29307950

RESUMO

Highly hydrophilic hollow polycaprolactone (PCL) microfibres were developed as building elements to create tissue-mimicking test objects (phantoms) for validation of diffusion magnetic resonance imaging (MRI). These microfibres were fabricated by the co-electrospinning of PCL-polysiloxane-based surfactant (PSi) mixture as shell and polyethylene oxide as core. The addition of PSi had a significant effect on the size of resultant electrospun fibres and the formation of hollow microfibres. The presence of PSi in both co-electrospun PCL microfibre surface and cross-section, revealed by X-ray energy dispersive spectroscopy (EDX), enabled water to wet these fibres completely (i.e., zero contact angle) and remained active for up to 12 months after immersing in water. PCL and PCL-PSi fibres with uniaxial orientation were constructed into water-filled phantoms. MR measurement revealed that water molecules diffuse anisotropically in the PCL-PSi phantom. Co-electrospun hollow PCL-PSi microfibres have desirable hydrophilic properties for the construction of a new generation of tissue-mimicking dMRI phantoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...