Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36770539

RESUMO

It is widely accepted that the corrosion resistance of stainless steel originates from a compact Cr2O3 layer in the native passive film that serves as a barrier to aggressive ions. However, this suggestion has been questioned by some researchers. They believe that protectiveness might be related to the film recovery. Herein, the pitting development of bare 316 L stainless steel was compared with a corrosion-resistance enhanced steel obtained by tuning the native passive film of the alloy. Statistical software was employed for tracing the size and number of pits on the alloy surface. The statistical results for 12 weeks in 1 M sodium chloride solution (80 °C) revealed that there was a crossover in the growing rates of stable pits (diameter > 9 µm) between the bare alloy and the film-enhanced one. Stable pits on bare 316 L occurred early but showed a comparatively slow increase in the following weeks, demonstrating that self-repairability of metastable pits rather than impermeability of the native passive film plays the key role in the early stage of pitting corrosion.

2.
Nanomaterials (Basel) ; 13(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36678119

RESUMO

The corrosion resistance of stainless steel is attributed to the extraordinary protectiveness of the ultrathin native passive film (~3 nanometers) on alloy surface. This protectiveness, independent of alloying, can possibly be further increased by modifying the native film to resist corrosion in harsh conditions. However, the modification based on the film itself is extremely difficult due to its rapid, self-limiting growth. Here we present a strategy by using low-temperature plasma processing so as to follow the growth kinetics of the native film. The native oxide film is restarted and can uniformly grow up to ~15 nanometers in a self-limiting manner. High-resolution TEM found that the film exhibited a well-defined, chemical-ordering layered structure. The following corrosion tests revealed that the anodic current density of the alloy decreased by two orders of magnitude in 0.6 M NaCl solution with a remarkable increase of pitting potential. This enhancement is also observed in Fe-Cr alloys with Cr contents above ~10.5 wt.%. The superior protectiveness of the alloy is thus attributed to the continuous and thickened high-quality ultrathin Cr2O3 layer in the restarted film.

3.
Adv Sci (Weinh) ; 7(22): 2002630, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33240780

RESUMO

Electrochemical nitrogen reduction reaction (NRR) provides a facile and sustainable strategy to produce ammonia (NH3) at ambient conditions. However, the low NH3 yield and Faradaic efficiency (FE) are still the main challenges due to the competitive hydrogen evolution reaction (HER). Herein, a three-phase electrocatalyst through in situ fabrication of Au nanoparticles (NPs) located on hydrophobic carbon fiber paper (Au/o-CFP) is designed. The hydrophobic CFP surface facilitates efficient three-phase contact points (TPCPs) for N2 (gas), electrolyte (liquid), and Au NPs (solid). Thus, concentrated N2 molecules can contact the electrocatalyst surface directly, inhibiting the HER since the lowered proton concentration and overall enhancing NRR. The three-phase Au/o-CFP electrocatalyst presents an excellent NRR performance with high NH3 yield rate of 40.6 µg h-1 mg-1 at -0.30 V and great FE of 31.3% at -0.10 V versus RHE (0.1 m Na2SO4). The N2-bubble contact angle result and cyclic voltammetry analysis confirm that the hydrophobic interface has a relatively strong interaction with N2 bubble for enhanced NRR and weak electrocatalytic activity for HER. Significantly, the three-phase Au/o-CFP exhibits excellent stability with a negligible fluctuation of NH3 yield and FE in seven-cycle test. This work provides a new strategy for improving NRR and simultaneously inhibiting HER.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...