Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(18)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39339101

RESUMO

Plywood is lightweight, strong, and durable, making it a widely used material in building decoration and furniture areas. In this study, formaldehyde-free, high-strength plywood was prepared through the incorporation of carbon fiber fabrics (CFFs) as reinforcement layers and their bonding with maleic anhydride polyethylene (MAPE) films. Various tests were performed to assess the impact of the carbon fiber fabric positioning on the physical and mechanical properties of plywood, including tensile shear strength, flexural strength, water absorption, thickness swelling, and electro-thermal properties. The results revealed that the plywood with CFFs exhibited significantly higher mechanical properties than plywood without CFFs. Particularly, the addition of CFFs increased the tensile strength of the plywood by nearly 54.43%, regardless of the CFFs' position. The symmetric placement of CFFs near the bottom and upper layers of the plywood resulted in a maximum modulus of rupture of 85.6 MPa. These findings were validated by numerical simulations. Scanning electron microscopy analysis of the plywood microstructures revealed that MAPE penetrated both the vessels and xylem of the wood veneers and the pores of the CFFs, thereby improving the mechanical properties of the plywood. Plywood reinforced with CFFs exhibited increased water absorption and thickness swelling after immersion. Additionally, the placement of CFFs influenced the electro-thermal properties of the plywood. Plywood with CFFs positioned near the bottom and upper surfaces exhibited superior thermal conductivity. Overall, this study presents a feasible method for developing high-performance, formaldehyde-free plywood and sustainable wood-based structural materials with potential applications in geothermal flooring.

2.
Adv Mater ; 36(14): e2306593, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38174617

RESUMO

Laser-diode-based solid-state lighting is primarily used in state-of-the-art illumination systems. However, these systems rely on light-converting inorganic phosphors, which have low quantum efficiencies and complex manufacturing conditions. In this study, a mismatched refractive index strategy is proposed to directly convert natural bulk wood into a laser-driven wood diffuser using a simple delignification and polymer infiltration method. The resulting material has the potential to be used in laser-driven diffuse illumination applications. The optical performance of the laser-driven wood diffuser is optimized by changing the density of natural wood. The optimal coefficient of illuminance variation of the wood diffuser is as low as 17.7%, which is significantly lower than that of commercial diffusers. The illuminance uniformity is larger than 0.9, which is significantly higher than the ISO requirements for indoor workplace lighting. The laser damage threshold is 7.9 J cm-2, which is considerably higher than those of the substrates of commercially available phosphors. Furthermore, the optimized wood diffuser exhibits outstanding mechanical properties, excellent thermal stability, tolerance to harsh environmental conditions, and low speckle contrast. These results show that the laser-driven wood diffuser is a promising laser-color converter that is suitable for indoor, long-distance outdoor, undersea, and other high-luminance laser lighting applications.

3.
Sensors (Basel) ; 15(4): 7969-84, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25855035

RESUMO

This paper presents a high performance triaxial cutting force sensor with excellent accuracy, favorable natural frequency and acceptable cross-interference for high speed turning process. Octagonal ring is selected as sensitive element of the designed sensor, which is drawn inspiration from ring theory. A novel structure of two mutual-perpendicular octagonal rings is proposed and three Wheatstone full bridge circuits are specially organized in order to obtain triaxial cutting force components and restrain cross-interference. Firstly, the newly developed sensor is tested in static calibration; test results indicate that the sensor possesses outstanding accuracy in the range of 0.38%-0.83%. Secondly, impacting modal tests are conducted to identify the natural frequencies of the sensor in triaxial directions (i.e., 1147 Hz, 1122 Hz and 2035 Hz), which implies that the devised sensor can be used for cutting force measurement in a high speed lathe when the spindle speed does not exceed 17,205 rev/min in continuous cutting condition. Finally, an application of the sensor in turning process is operated to show its performance for real-time cutting force measurement; the measured cutting forces demonstrate a good accordance with the variation of cutting parameters. Thus, the developed sensor possesses perfect properties and it gains great potential for real-time cutting force measurement in turning.

4.
Sensors (Basel) ; 14(7): 12174-90, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-25006998

RESUMO

Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM) as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU) after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system's performance. The temperature compensation is solved in the interval from -40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10(-5)/°C and 29.5 × 10(-5)/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10(-5)/°C and 2.1 × 10(-5)/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor.

5.
New Phytol ; 194(1): 70-82, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22142198

RESUMO

• Depending on the atmospheric composition, isoprene emissions from plants can have a severe impact on air quality and regional climate. For the plant itself, isoprene can enhance stress tolerance and also interfere with the attraction of herbivores and parasitoids. • Here, we tested the growth performance and fitness of Populus × canescens in which isoprene emission had been knocked down by RNA interference technology (PcISPS-RNAi plants) for two growing seasons under outdoor conditions. • Neither the growth nor biomass yield of the PcISPS-RNAi poplars was impaired, and they were even temporarily enhanced compared with control poplars. Modelling of the annual carbon balances revealed a reduced carbon loss of 2.2% of the total gross primary production by the absence of isoprene emission, and a 6.9% enhanced net growth of PcISPS-RNAi poplars. However, the knock down in isoprene emission resulted in reduced susceptibility to fungal infection, whereas the attractiveness for herbivores was enhanced. • The present study promises potential for the use of non- or low-isoprene-emitting poplars for more sustainable and environmentally friendly biomass production, as reducing isoprene emission will presumably have positive effects on regional climate and air quality.


Assuntos
Poluição do Ar/prevenção & controle , Atmosfera/química , Butadienos/análise , Hemiterpenos/análise , Pentanos/análise , Populus/crescimento & desenvolvimento , Biomassa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Celulose/metabolismo , Simulação por Computador , Cruzamentos Genéticos , Herbivoria/fisiologia , Lignina/metabolismo , Fotossíntese , Transpiração Vegetal/fisiologia , Plantas Geneticamente Modificadas , Populus/genética , Estações do Ano , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos Orgânicos Voláteis/análise , Madeira
6.
Plant Methods ; 7: 9, 2011 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-21477346

RESUMO

BACKGROUND: There is an increasing demand for renewable resources to replace fossil fuels. However, different applications such as the production of secondary biofuels or combustion for energy production require different wood properties. Therefore, high-throughput methods are needed for rapid screening of wood in large scale samples, e.g., to evaluate the outcome of tree breeding or genetic engineering. In this study, we investigated the intra-specific variability of lignin and energy contents in extractive-free wood of hybrid poplar progenies (Populus trichocarpa × deltoides) and tested if the range was sufficient for the development of quantitative prediction models based on Fourier transform infrared spectroscopy (FTIR). Since lignin is a major energy-bearing compound, we expected that the energy content of wood would be positively correlated with the lignin content. RESULTS: Lignin contents of extractive-free poplar wood samples determined by the acetyl bromide method ranged from 23.4% to 32.1%, and the calorific values measured with a combustion calorimeter varied from 17260 to 19767 J g-1. For the development of calibration models partial least square regression and cross validation was applied to correlate FTIR spectra determined with an attenuated total reflectance (ATR) unit to measured values of lignin or energy contents. The best models with high coefficients of determination (R2 (calibration) = 0.91 and 0.90; R2 (cross-validation) = 0.81 and 0.79) and low root mean square errors of cross validation (RMSECV = 0.77% and 62 J g-1) for lignin and energy determination, respectively, were obtained after data pre-processing and automatic wavenumber restriction. The calibration models were validated by analyses of independent sets of wood samples yielding R2 = 0.88 and 0.86 for lignin and energy contents, respectively. CONCLUSIONS: These results show that FTIR-ATR spectroscopy is suitable as a high-throughput method for lignin and energy estimations in large data sets. Our study revealed that the intra-specific variations in lignin and energy contents were unrelated to each other and that the lignin content, therefore, was no predictor of the energy content. Employing principle component analyses we showed that factor loadings for the energy content were mainly associated with carbohydrate ring vibrations, whereas those for lignin were mainly related to aromatic compounds. Therefore, our analysis suggests that it may be possible to optimize the energy content of trees without concomitant increase in lignin.

7.
Bioresour Technol ; 100(1): 505-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18650080

RESUMO

The aim of the present study was to determine whether the radical reaction intermediates--reactive oxygen species (ROS) were formed during the laccase-catalyzed oxidation of wood fibers from Chinese fir (Cunninghamia lanceolata) and to quantify tentatively its production with electron spin resonance (ESR) spectrometry. To investigate the activation pathways triggered by laccase, ESR spin-trapping techniques using N-tert-butyl-alpha-phenylnitrone (PBN) as spin trap followed by ethyl acetate extraction were employed to identify and quantify the free radical intermediates. ROS such as the superoxide and hydroxyl radical was detected and quantified in the laccase catalyzed oxidation of wood fibers, suggesting that ROS is the main free radical intermediates for laccase reaction. Based on the findings of the presence of ROS and previous literature on the free radical reaction of laccase oxidation of wood fibers, a possible reaction mechanism involving ROS-mediated attack on the domains of lignin which is not directly accessible for the enzyme and solubilized low-molecular mass lignins which function as reactive compounds like adhesives and may cling back to the fiber surface, could accordingly describe laccase-catalyzed oxidation of Chinese fir wood fibers.


Assuntos
Abies/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Lacase/química , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/química , Madeira/análise , Madeira/química , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA