Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(41): 27259-27270, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34693146

RESUMO

The adsorption behaviors of CO2 at the Cu n /TiC(001) interfaces (n = 1-8) have been investigated using the density functional theory method. Our results reveal that the introduction of copper clusters on a TiC surface can significantly improve the thermodynamic stability of CO2 chemisorption. However, the most stable adsorption site is sensitive to the size and morphology of Cu n particles. The interfacial configuration is the most stable structure for copper clusters with small (n ≤ 2) and large (n ≥ 8) sizes, in which both Cu particles and TiC support are involved in CO2 activation. In such a case, the synergistic behavior is associated with the ligand effect introduced by directly forming adsorption bonds with CO2. For those Cu n clusters with a medium size (n = 3-7), the configuration where CO2 adsorbs solely on the exposed hollow site constructed by Cu atoms at the interface shows the best stability, and the charger transfer becomes the primary origin of the synergistic effect in promoting CO2 activation. Since the most obvious deformation of CO2 is observed for the TiC(001)-surface-supported Cu4 and Cu7 particles, copper clusters with specific sizes of n = 4 and 7 exhibit the best ability for CO2 activation. Furthermore, the kinetic barriers for CO2 dissociation on Cu4- and Cu7-supported TiC surfaces are determined. The findings obtained in this work provide useful insights into optimizing the Cu/TiC interface with high catalytic activation of CO2 by precisely controlling the size and dispersion of copper particles.

2.
Sensors (Basel) ; 17(8)2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28817079

RESUMO

The mechanism of CO oxidation on the WO3(001) surface for gas sensing performance has been systematically investigated by means of first principles density functional theory (DFT) calculations. Our results show that the oxidation of CO molecule on the perfect WO3(001) surface induces the formation of surface oxygen vacancies, which results in an increase of the surface conductance. This defective WO3(001) surface can be re-oxidized by the O2 molecules in the atmosphere. During this step, the active O2- species is generated, accompanied with the obvious charge transfer from the surface to O2 molecule, and correspondingly, the surface conductivity is reduced. The O2- species tends to take part in the subsequent reaction with the CO molecule, and after releasing CO2 molecule, the perfect WO3(001) surface is finally reproduced. The activation energy barriers and the reaction energies associated with above surface reactions are determined, and from the kinetics viewpoint, the oxidation of CO molecule on the perfect WO3(001) surface is the rate-limiting step with an activation barrier of about 0.91 eV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...