Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2301531, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308413

RESUMO

Hole-transporting layer-free carbon-based perovskite solar cells (HTL-free C-PSCs) hold great promise for photovoltaic applications due to their low cost and outstanding stability. However, the low power conversion efficiency (PCE) of HTL-free C-PSCs mainly results from grain boundaries (GBs). Here, epitaxial growth is proposed to rationally design a hybrid nanostructure of PbI2 nanosheets/perovskite with the desired photovoltaic properties. A post-treatment technique using tri(2,2,2-trifluoromethyl) phosphate (TFEP) to induce in situ epitaxial growth of PbI2 nanosheets at the GBs of perovskite films realizes high-performance HTL-free C-PSCs. The structure model and high-resolution transmission electron microscope unravel the epitaxial growth mechanism. The epitaxial growth of oriented PbI2 nanosheets generates the PbI2 /perovskite heterojunction, which not only passivates defects but forms type-I band alignment, avoiding carrier loss. Additionally, Fourier-transform infrared spectroscopy, 31 P NMR, and 1 H NMR spectra reveal the passivation effect and hydrogen bonding interaction between TFEP and perovskite. As a result, the VOC is remarkably boosted from 1.04 to 1.10 V, leading to a substantial gain in PCE from 14.97% to 17.78%. In addition, the unencapsulated PSC maintains the initial PCE of 80.1% for 1440 h under air ambient of 40% RH. The work offers a fresh perspective on the rational design of high-performance HTL-free C-PSCs.

2.
Small ; 20(21): e2308783, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105423

RESUMO

The low power conversion efficiency (PCE) of hole transport materials (HTM) - free carbon-based perovskite solar cells (C-PSCs) poses a challenge. Here, a novel 2D Eu-TCPP MOF (TCPP; [tetrakis (4-carboxyphenyl) porphyrin]) sandwiched between the perovskite layer and the carbon electrode is used to realize an effective and stable HTM-free C-PSCs. Relying on the synergistic effect of both the metal-free TCPP ligand with a unique absorption spectrum and hydrophobicity and the EuO4(OH)2 chain in the Eu-TCPP MOF, defects are remarkably suppressed and light-harvesting capability is significantly boosted. Energy band alignment is achieved after Eu-TCPP MOF treatment, promoting hole collection. Förster resonance energy transfer results in improved light utilization and protects the perovskite from decomposition. As a result, the HTM-free C-PSCs with Eu-TCPP MOF reach a champion PCE of 18.13%. In addition, the unencapsulated device demonstrates outstanding thermal stability and UV resistance and keeps 80.6% of its initial PCE after 5500 h in a high-humidity environment (65%-85% RH).

3.
Materials (Basel) ; 16(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37374537

RESUMO

Liquid-liquid phase transition (LLPT) is a transition from one liquid state to another with the same composition but distinct structural change, which provides an opportunity to explore the relationships between structural transformation and thermodynamic/kinetic anomalies. Herein the abnormal endothermic LLPT in Pd43Ni20Cu27P10 glass-forming liquid was verified and studied by flash differential scanning calorimetry (FDSC) and ab initio molecular dynamics (AIMD) simulations. The results show that the change of the atomic local structure of the atoms around the Cu-P bond leads to the change in the number of specific clusters <0 2 8 0> and <1 2 5 3>, which leads to the change in the liquid structure. Our findings reveal the structural mechanisms that induce unusual heat-trapping phenomena in liquids and advance the understanding of LLPT.

4.
Med Phys ; 50(1): 192-208, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36039982

RESUMO

BACKGROUND: Computed tomography (CT) generates a three-dimensional rendering that can be used to interrogate a given region or desired structure from any orientation. However, in preclinical research, its deployment remains limited due to relatively high upfront costs. Existing integrated imaging systems that provide merged planar X-ray also dwarfs CT popularity in small laboratories due to their added versatility. PURPOSE: In this paper, we sought to generate CT-like data using an existing small-animal X-ray imager with a specialized specimen rotation system, or MiSpinner. This setup conforms to the cone-beam CT (CBCT) geometry, which demands high spatial calibration accuracy. Therefore, a simple but robust geometry calibration algorithm is necessary to ensure that the entire imaging system works properly and accurately. METHODS: Because the rotation system is not permanently affixed, we propose a structure tensor-based two-step online (ST-TSO) geometry calibration algorithm. Specifically, two datasets are needed, namely, calibration and actual measurements. A calibration measurement detects the background of the system forward X-ray projections. A study on the background image reveals the characteristics of the X-ray photon distribution, and thus, provides a reliable estimate of the imaging geometry origin. Actual measurements consisted of an X-ray of the intended object, including possible geometry errors. A comprehensive image processing technique helps to detect spatial misalignment information. Accordingly, the first processing step employs a modified projection matrix-based calibration algorithm to estimate the relevant geometric parameters. Predicted parameters are then fine-tuned in a second processing step by an iterative strategy based on the symmetry property of the sum of projections. Virtual projections calculated from the parameters after two-step processing compensate for the scanning errors and are used for CT reconstruction. Experiments on phantom and mouse imaging data were performed to validate the calibration algorithm. RESULTS: Once system correction was conducted, CBCT of a CT bar phantom and a cohort of euthanized mice were analyzed. No obvious structure error or spatial artifacts were observed, validating the accuracy of the proposed geometry calibration method. Digital phantom simulation indicated that compared with the preset spatial values, errors in the final estimated parameters could be reduced to 0.05° difference in dominant angle and 0.5-pixel difference in dominant axis bias. The in-plane resolution view of the CT-bar phantom revealed that the resolution approaches 150 µ $\umu$ m. CONCLUSIONS: A constrained two-step online geometry calibration algorithm has been developed to calibrate an integrated X-ray imaging system, defined by a first-step analytical estimation and a second-step iterative fine-tuning. Test results have validated its accuracy in system correction, thus demonstrating the potential of the described system to be modified and adapted for preclinical research.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Tomografia Computadorizada por Raios X , Animais , Camundongos , Calibragem , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Imagens de Fantasmas
5.
Artigo em Inglês | MEDLINE | ID: mdl-38226341

RESUMO

Purpose: We investigated the feasibility of dual-energy (DE) detection of bone marrow edema (BME) using a dedicated extremity cone-beam CT (CBCT) with a unique three-source x-ray unit. The sources can be operated at different energies to enable single-scan DE acquisitions. However, they are arranged parallel to the axis of rotation, resulting in incomplete sampling and precluding the application of DE projection-domain decompositions (PDD) for beam-hardening reduction. Therefore, we propose a novel combination of a model-based "one-step" DE two-material decomposition followed by a constrained image-domain change-of-basis to obtain virtual non-calcium (VNCa) images for BME detection. Methods: DE projections were obtained using an "alternating-kV" protocol by operating the peripheral two sources of the CBCT system at low-energy (60 kV, 0.105 mAs/frame) and the central source at high-energy (100 kV, 0.028 mAs/frame), for a total of 600 frames over 216° of gantry rotation. Projections were processed with detector lag, glare and fast Monte Carlo (MC)-based iterative scatter corrections. Model-based material decomposition (MBMD) was then implemented to obtain aluminum (Al) and polyethylene (PE) volume fraction images with minimal beam-hardening. Statistical ray weights in MBMD were modified to account for regions with highly oblique sampling by the peripheral sources. To generate the VNCa maps, image-domain decomposition (IDD) constrained by the volume conservation principle (VCP) was performed to convert the Al and PE MBMD images into volume fractions of water, fat and cortical bone. Accuracy of BME detection was evaluated using physical phantom data acquired on the multi-source extremity CBCT scanner. Results: The proposed framework estimated the volume of BME with ~10% error. The MC-based scatter corrections and the modified MBMD ray weights were essential to achieve such performance - the error without MC scatter corrections was >30%, whereas the uniformity of estimated VNCa images was 3x improved using the modified weights compared to the conventional weights. Conclusions: The proposed DE decomposition framework was able to overcome challenges of high scatter and incomplete sampling to achieve BME detection on a CBCT system with axially-distributed x-ray sources.

6.
J Phys Chem A ; 126(41): 7452-7459, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36205704

RESUMO

Cycloparaphenylenes ([n]CPPs) and their derivatives are known for the unique size-dependent photophysical properties, which are largely attributed to the structural planarization-associated exciton localization, attracting substantial research attention. In this work, we show that the steric hindrance between neighboring structural units plays a key role in governing the photoinduced global/local structural planarization and electron-hole distribution features of [n]CPP materials, due to the tunable strength of H···H repulsion between neighboring units via structural modification or C-H distance variation as revealed by density functional theory (DFT) and time-dependent DFT calculations. According to our results, steric hindrance controls the manner and also the extent of excited-state structural planarization, where a weak (strong) steric hindrance favors (hinders) structural planarization upon relaxation in the first excited singlet (S1) state as compared to the ground (S0)-state structure. Depending on the molecular structures, steric hindrance leads to fully delocalized, partially separated, or more localized electron-hole distributions. For example, via H···H repulsion release by manually shortening the C-H distance or by chemical substitution of C-H with N atoms, the modified [10]CPP structures show fully planarized configurations (each dihedral angle can be less than 2°) and entirely delocalized electron-hole distribution upon photorelaxation. This work provides insights into the structural origin of the unusual photophysical properties of [n]CPPs and shows the promise of steric hindrance tuning in accessing diverse excited-state features in [n]CPP materials.

7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3157-3160, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891911

RESUMO

For a tomographic imaging system, image reconstruction quality is dependent on the accurate determination of coordinates for the true center of rotation (COR). A significant COR offset error may introduce ringing, streaking, or other artifacts, while smaller error in determining COR may blur the reconstructed image. Well known COR correction techniques including image registration, center of mass calculation, or reconstruction evaluation work well under certain conditions. However, many of these methods do not consider various real-world cases such as a tilted sensor or non-parallel projections. Furthermore, a limited number of projections introduces stripe artifacts into the image reconstruction that interfere with many of these classic COR correction techniques. In this paper, we propose a revised variance-based algorithm to find the correct COR position automatically prior to tomographic reconstruction. The algorithm was tested on both simulated phantoms and acquired datasets, and our results show improved reconstruction accuracy.


Assuntos
Artefatos , Tomografia Computadorizada de Feixe Cônico , Algoritmos , Imagens de Fantasmas , Rotação
8.
N Z Med J ; 126(1376): 61-70, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23822962

RESUMO

AIM: To determine the content and release kinetics of 1-benzylpiperazine (BZP) and 1-(3-trifluoromethyl-phenyl)piperazine (TFMPP) from "party pill" formulations. From these data, the possible impact of pharmaceutical quality upon the safety of such illicit formulations may be inferred. METHODS: The amount of BZP and TFMPP in party pill formulations was determined using a validated HPLC method. The in-vitro release kinetics of selected party pill brands were determined using a USP dissolution apparatus (75 rpm, 37.5 degrees Celsius). The release data were then fitted to a first order release model using PLOT software and the time taken to achieve 90% release reported. RESULTS: Many of the tested party pill brands contained amounts of BZP and TFMPP that varied considerably from that stated on the packaging; including considerable TFMPP content in some brands not labelled to contain this drug. Dissolution studies revealed that there was considerable variability in the release kinetics between brands; in one case 90% release required >30 minutes. CONCLUSION: Lack of quality control in party pill manufacture may have led to the toxic effects reported by users unaware of the true content and release of drug from pills. More stringent regulation in the manufacture and quality control of "new generation party pills" is essential to the harm reduction campaign.


Assuntos
Drogas Ilícitas , Piperazinas , Segurança , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Rotulagem de Medicamentos , Drogas Ilícitas/química , Drogas Ilícitas/farmacocinética , Nova Zelândia , Piperazinas/análise , Piperazinas/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...