Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 102(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34494949

RESUMO

Transmission of the crinivirus, lettuce infectious yellows virus (LIYV), is determined by a minor coat protein (CPm)-mediated virion retention mechanism located in the foregut of its whitefly vector. To better understand the functions of LIYV CPm, chimeric CPm mutants engineered with different lengths of the LIYV CPm amino acid sequence and that of the crinivirus, lettuce chlorosis virus (LCV), were constructed based on bioinformatics and sequence alignment data. The 485 amino acid-long chimeric CPm of LIYV mutant, CPmP-1, contains 60 % (from position 3 to 294) of LCV CPm amino acids. The chimeric CPm of mutants CPmP-2, CPmP-3 and CPmP-4 contains 46 (position 3 to 208), 51 (position 3 to 238) and 41 % (position 261 to 442) of LCV CPm amino acids, respectively. All four mutants moved systemically, expressed the chimeric CPm and formed virus particles. However, following acquisition feeding of the virus preparations, only CPmP-1 was retained in the foreguts of a significant number of vectors and transmitted. In immuno-gold labelling transmission electron microscopy (IGL-TEM) analysis, CPmP-1 particles were distinctly labelled by antibodies directed against the LCV but not LIYV CPm. In contrast, CPmP-4 particles were not labelled by antibodies directed against the LCV or LIYV CPm, while CPmP-2 and -3 particles were weakly labelled by anti-LIYV CPm but not anti-LCV CPm antibodies. The unique antibody recognition and binding pattern of CPmP-1 was also displayed in the foreguts of whitefly vectors that fed on CPmP-1 virions. These results are consistent with the hypothesis that the chimeric CPm of CPmP-1 is incorporated into functional virions, with the LCV CPm region being potentially exposed on the surface and accessible to anti-LCV CPm antibodies.


Assuntos
Proteínas do Capsídeo/metabolismo , Crinivirus/fisiologia , Hemípteros/virologia , Insetos Vetores/virologia , Nicotiana/virologia , Doenças das Plantas/virologia , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Crinivirus/genética , Sistema Digestório/virologia , Engenharia Genética , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/metabolismo , Mutação , Plantas Geneticamente Modificadas/virologia , Vírion/fisiologia
2.
Viruses ; 13(8)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34452445

RESUMO

Lettuce infectious yellows virus is the first crinivirus for which the retention of purified virions ingested into the whitefly (Bemisia tabaci New World (NW)) vector's foregut, has been demonstrated to be a requisite for successful virus transmission. This key finding supports the hypothesis that the determinant of foregut retention and transmission is present on the virion itself. However, whether this is also true for other criniviruses has not been established. Here, we provide evidence that lettuce chlorosis virus (LCV) acquired from plants is retained in the foreguts of both the B. tabaci NW and Middle East-Asia Minor 1 (MEAM1) vector species and transmitted upon inoculation feeding. An association between foregut retention and transmission by NW vectors is also observed following the acquisition and inoculation feeding of LCV virions purified using a standard procedure involving 2% or 4% (v/v) Triton™ X-100 (TX-100). However, while virions purified with 2% or 4% TX-100 are also retained in the foreguts of MEAM1 vectors, transmission is observed with the 4% TX-100-purified virions or when more vectors are used for acquisition and inoculation feeding. These results suggest that an intrinsic difference exists between NW and MEAM1 vectors in their interactions with, and transmission of, LCV virions.


Assuntos
Crinivirus/fisiologia , Sistema Digestório/virologia , Hemípteros/fisiologia , Hemípteros/virologia , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Animais , Sistema Digestório/anatomia & histologia , Doenças das Plantas/virologia , Vírion/fisiologia
3.
PLoS One ; 14(3): e0213087, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30840696

RESUMO

The split GFP technique is based on the auto-assembly of GFP when two polypeptides-GFP1-10 (residues 1-214; the detector) and GFP11 (residues 215-230; the tag)-both non-fluorescing on their own, associate spontaneously to form a fluorescent molecule. We evaluated this technique for its efficacy in contributing to the characterization of Cauliflower mosaic virus (CaMV) infection. A recombinant CaMV with GFP11 fused to the viral protein P6 (a key player in CaMV infection and major constituent of viral factory inclusions that arise during infection) was constructed and used to inoculate transgenic Arabidopsis thaliana expressing GFP1-10. The mutant virus (CaMV11P6) was infectious, aphid-transmissible and the insertion was stable over many passages. Symptoms on infected plants were delayed and milder. Viral protein accumulation, especially of recombinant 11P6, was greatly decreased, impeding its detection early in infection. Nonetheless, spread of infection from the inoculated leaf to other leaves was followed by whole plant imaging. Infected cells displayed in real time confocal laser scanning microscopy fluorescence in wild type-looking virus factories. Thus, it allowed for the first time to track a CaMV protein in vivo in the context of an authentic infection. 11P6 was immunoprecipitated with anti-GFP nanobodies, presenting a new application for the split GFP system in protein-protein interaction assays and proteomics. Taken together, split GFP can be an attractive alternative to using the entire GFP for protein tagging.


Assuntos
Arabidopsis/virologia , Caulimovirus/patogenicidade , Proteínas de Fluorescência Verde/genética , Proteínas Virais/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Caulimovirus/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Mutagênese Sítio-Dirigida , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/virologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Virais/metabolismo
4.
Curr Opin Virol ; 33: 129-136, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30212752

RESUMO

Plant viruses that are transmitted in a non-circulative, semi-persistent (NCSP) manner have determinants on, and/or accessories to, their capsids that facilitate virion binding to specific retention sites in their insect vectors. Bilateral interactions and interactions occurring at the nexus of all three partners (virus, vector and plant) also contribute to transmission by influencing virus acquisition and inoculation. Vector feeding behavior lies at the core of this trio of virus transmission processes (retention-acquisition-inoculation), but transmission may also be mediated by virus infection-triggered and/or vector feeding-triggered plant cues that influence behavioral responses such as vector attraction, deterrence and dispersal. Insights into the multiphasic interactions and coordinated processes will lead to a better understanding of the mechanisms of NCSP transmission.


Assuntos
Interações Hospedeiro-Patógeno , Insetos Vetores/virologia , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Vírus de Plantas/crescimento & desenvolvimento , Vírus de Plantas/patogenicidade , Animais , Comportamento Alimentar , Insetos Vetores/fisiologia
5.
Insect Sci ; 24(6): 1079-1092, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28677320

RESUMO

Transmission of plant viruses by phytophagous hemipteran insects encompasses complex interactions underlying a continuum of processes involved in virus acquisition, retention and inoculation combined with vector feeding behavior. Here, we investigated the effects of dietary pH on whitefly (Bemisia tabaci) feeding behavior and release of Lettuce infectious yellows virus (LIYV) virions retained in the vector's foregut. Electrical penetration graph analysis revealed that variables associated with whitefly probing and ingestion did not differ significantly in pH (4, 7.4, and 9) adjusted artificial diets. To investigate virus retention and release, whiteflies allowed to acquire LIYV virions in a pH 7.4 artificial diet were fed pH 4, 7.4, or 9 virion-free artificial (clearing) diets. Immunofluorescent localization analyses indicated that virions remained bound to the foreguts of approximately 20%-24% of vectors after they fed on each of the 3 pH-adjusted clearing diets. When RNA preparations from the clearing diets were analyzed by reverse transcription (RT) nested-PCR and, in some cases, real-time qPCR, successful amplification of LIYV-specific sequence was infrequent but consistently repeatable for the pH 7.4 diet but never observed for the pH 4 and 9 diets, suggesting a weak pH-dependent effect for virion release. Viruliferous vectors that fed on each of the 3 pH-adjusted clearing diets transmitted LIYV to virus-free plants. These results suggest that changes in pH values alone in artificial diet do not result in observable changes in whitefly feeding behaviors, an observation that marks a first in the feeding of artificial diet by whitefly vectors; and that there is a potential causal and contingent relationship between the pH in artificial diet and the release/inoculation of foregut bound virions.


Assuntos
Crinivirus/fisiologia , Hemípteros/fisiologia , Insetos Vetores/fisiologia , Animais , Dieta , Comportamento Alimentar , Feminino , Hemípteros/virologia , Concentração de Íons de Hidrogênio , Insetos Vetores/virologia , Masculino
6.
Sci Rep ; 6: 34482, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27694962

RESUMO

The terminal ends in the genome of RNA viruses contain features that regulate viral replication and/or translation. We have identified a Y-shaped structure (YSS) in the 3' terminal regions of the bipartite genome of Lettuce chlorosis virus (LCV), a member in the genus Crinivirus (family Closteroviridae). The YSS is the first in this family of viruses to be determined using Selective 2'-Hydroxyl Acylation Analyzed by Primer Extension (SHAPE). Using luciferase constructs/replicons, in vivo and in vitro assays showed that the 5' and YSS-containing 3' terminal regions of LCV RNA1 supported translation activity. In contrast, similar regions from LCV RNA2, including those upstream of the YSS, did not. LCV RNA2 mutants with nucleotide deletions or replacements that affected the YSS were replication deficient. In addition, the YSS of LCV RNA1 and RNA2 were interchangeable without affecting viral RNA synthesis. Translation and significant replication were observed for specific LCV RNA2 replicons only in the presence of LCV RNA1, but both processes were impaired when the YSS and/or its upstream region were incomplete or altered. These results are evidence that the YSS is essential to the viral replication machinery, and contributes to replication enhancement and replication-associated translation activity in the RNA2 replicons.


Assuntos
Crinivirus/fisiologia , Nicotiana/virologia , Células Vegetais/virologia , Protoplastos/virologia , RNA Viral/biossíntese , Replicação Viral/fisiologia , Mutação , Células Vegetais/metabolismo , Protoplastos/citologia , Protoplastos/metabolismo , RNA Viral/genética , Nicotiana/citologia , Nicotiana/metabolismo
7.
Curr Opin Virol ; 15: 48-55, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26318639

RESUMO

The non-circulative, semi-persistent (NCSP) mode of insect vector-mediated plant virus transmission is shaped by biological, molecular and mechanical interactions that take place across a continuum of processes involved in virion acquisition, retention and inoculation. Our understanding of the interactive roles of virus, insect vector, and plant associated with NCSP transmission is still evolving. Mechanisms exist that determine where and how virion acquisition (from the plant) and retention (in the insect vector) are achieved, with both processes being mediated by strategies involving viral capsid proteins, in some cases aided by non-capsid proteins. By contrast, mechanisms underlying virion inoculation (to the plant) remain poorly understood. Here, we review the established paradigms as well as fresh perspectives on the mechanisms of NCSP transmission.


Assuntos
Insetos Vetores/virologia , Vírus de Plantas/fisiologia , Plantas/virologia , Animais , Proteínas do Capsídeo/metabolismo , Flores/virologia , Interações Hospedeiro-Parasita , Doenças das Plantas/virologia , Vírion/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...