Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 424
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000082

RESUMO

Drought stress is one of the significant abiotic stresses that limit soybean (Glycine max [L.] Merr.) growth and production. Ankyrin repeat (ANK) proteins, being highly conserved, occupy a pivotal role in diverse biological processes. ANK genes were classified into nine subfamilies according to conserved domains in the soybean genome. However, the function of ANK-TM subfamily proteins (Ankyrin repeat proteins with a transmembrane domain) in the abiotic-stress response to soybean remains poorly understood. In this study, we first demonstrated the subcellular localization of GmANKTM21 in the cell membrane and nucleus. Drought stress-induced mRNA levels of GmANKTM21, which encodes proteins belonging to the ANK-TM subfamily, Transgenic 35S:GmANKTM21 soybean improved drought tolerance at the germination and seedling stages, with higher stomatal closure in soybean, lower water loss, lower malondialdehyde (MDA) content, and less reactive oxygen species (ROS) production compared with the wild-type soybean (Dongnong50). RNA-sequencing (RNA-seq) and RT-qPCR analysis of differentially expressed transcripts in overexpression of GmANKTM21 further identified potential downstream genes, including GmSPK2, GmSPK4, and GmCYP707A1, which showed higher expression in transgenic soybean, than those in wild-type soybean and KEGG enrichment analysis showed that MAPK signaling pathways were mostly enriched in GmANKTM21 overexpressing soybean plants under drought stress conditions. Therefore, we demonstrate that GmANKTM21 plays an important role in tolerance to drought stress in soybeans.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Glycine max , Sistema de Sinalização das MAP Quinases , Proteínas de Plantas , Estômatos de Plantas , Plantas Geneticamente Modificadas , Estresse Fisiológico , Glycine max/genética , Glycine max/metabolismo , Glycine max/fisiologia , Glycine max/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Estômatos de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Repetição de Anquirina/genética , Resistência à Seca
2.
Bioresour Technol ; : 131098, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986886

RESUMO

As the highest-demand vitamin, the development of a one-step vitamin C synthesis process has been slow for a long time. In previous research, a Gluconobacter oxydans strain (GKLG9) was constructed that can directly synthesize 2-keto-L-gulonic acid (2-KLG) from glucose, but carbon source utilization remained low. Therefore, this study first identified the gene 4kas (4-keto-D-arabate synthase) to reduce the loss of extracellular carbon and inhibit the browning of fermentation broth. Then, promoter engineering was conducted to enhance the intracellular glucose transport pathway and concentrate intracellular glucose metabolism on the pentose phosphate pathway to provide more reducing power. Finally, by introducing the D-sorbitol pathway, the titer of 2-KLG was increased to 38.6 g/L within 60 h in a 5-L bioreactor, with a glucose-to-2-KLG conversion rate of about 46 %. This study is an important step in the development of single-bacterial one-step fermentation to produce 2-KLG.

3.
ACS Appl Mater Interfaces ; 16(26): 33396-33403, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961570

RESUMO

Germanium has been recognized as a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity and excellent lithium-ion diffusivity. Nonetheless, it is challenging to enhance both the high-rate performance and long-term cycling stability simultaneously. This study introduces a novel heterostructure composed of germanium nanosheets integrated with graphene (Ge NSs@Gr). These nanosheets undergo an in situ phase transformation from a hydrogen-terminated multilayer germanium compound termed germanane (GeH) derived via topochemical deintercalation from CaGe2. This approach mitigates oxidation and prevents restacking by functionalizing the exfoliated germanane with octadecenoic organic molecules. The resultant germanium nanosheets retain their structural integrity from CaGe2 and present an exposed, active (111) surface that features an open crystal lattice, facilitating swift lithium-ion migration conducive to lithium storage. The composite material delivers a substantial reversible capacity of 1220 mA h g-1 at a current density of 0.2 C and maintains a capacity of 456 mA h g-1 even at an ultrahigh current density of 10 C over extended cycling. Impressively, a capacity of 316 mA h g-1 remains after 5000 cycles. The exceptional high-rate performance and durable cycling stability underscore the Ge NSs@Gr anode's potential as a highly viable option for LIBs.

4.
Environ Sci Technol ; 58(24): 10863-10873, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38842426

RESUMO

Electrochemical nitrate reduction (NO3RR) provides a new option to abate nitrate contamination with a low carbon footprint. Restricted by competitive hydrogen evolution, achieving satisfied nitrate reduction performance in neutral media is still a challenge, especially for the regulation of this multielectron multiproton reaction. Herein, facile element doping is adopted to tune the catalytic behavior of IrNi alloy nanobranches with an unconventional hexagonal close-packed (hcp) phase toward NO3RR. In particular, the obtained hcp IrNiCu nanobranches favor the ammonia production and suppress byproduct formation in a neutral electrolyte indicated by in situ differential electrochemical mass spectrometry, with a high Faradaic efficiency (FE) of 85.6% and a large yield rate of 1253 µg cm-2 h-1 at -0.4 and -0.6 V (vs reversible hydrogen electrode (RHE)), respectively. In contrast, the resultant hcp IrNiCo nanobranches promote the formation of nitrite, with a peak FE of 33.1% at -0.1 V (vs RHE). Furthermore, a hybrid electrolysis cell consisting of NO3RR and formaldehyde oxidation is constructed, which are both catalyzed by hcp IrNiCu nanobranches. This electrolyzer exhibits lower overpotential and holds the potential to treat polluted air and wastewater simultaneously, shedding light on green chemical production based on contaminate degradation.


Assuntos
Nitratos , Oxirredução , Nitratos/química , Técnicas Eletroquímicas , Catálise , Metais/química
5.
Metab Eng ; 84: 158-168, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942195

RESUMO

Vitamin B5 [D-pantothenic acid (D-PA)] is an essential water-soluble vitamin that is widely used in the food and feed industries. Currently, the relatively low fermentation efficiency limits the industrial application of D-PA. Here, a plasmid-free D-PA hyperproducer was constructed using systematic metabolic engineering strategies. First, pyruvate was enriched by deleting the non-phosphotransferase system, inhibiting pyruvate competitive branches, and dynamically controlling the TCA cycle. Next, the (R)-pantoate pathway was enhanced by screening the rate-limiting enzyme PanBC and regulating the other enzymes of this pathway one by one. Then, to enhance NADPH sustainability, NADPH regeneration was achieved through the novel "PEACES" system by (1) expressing the NAD + kinase gene ppnk from Clostridium glutamicum and the NADP + -dependent gapCcae from Clostridium acetobutyricum and (2) knocking-out the endogenous sthA gene, which interacts with ilvC and panE in the D-PA biosynthesis pathway. Combined with transcriptome analysis, it was found that the membrane proteins OmpC and TolR promoted D-PA efflux by increasing membrane fluidity. Strain PA132 produced a D-PA titer of 83.26 g/L by two-stage fed-batch fermentation, which is the highest D-PA titer reported so far. This work established competitive producers for the industrial production of D-PA and provided an effective strategy for the production of related products.

6.
Int J Surg ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869974

RESUMO

BACKGROUND: The management of hepatocellular carcinoma (HCC) with high tumor burden and major portal vein tumor thrombosis (PVTT) remains a great challenge. We aimed to investigate the efficacy and safety of lenvatinib plus drug-eluting bead transarterial chemoembolization (DEB-TACE) and hepatic arterial infusion chemotherapy (HAIC) with oxaliplatin, fluorouracil and leucovorin (Len+DEB-TACE+HAIC) versus lenvatinib plus DEB-TACE (Len+DEB-TACE) for HCC > 7.0 cm accompanied with major PVTT. MATERIALS AND METHODS: This multicenter retrospective cohort study evaluated consecutive patients with HCC (> 7.0 cm) and major PVTT who received Len+DEB-TACE+HAIC (Len+DEB-TACE+HAIC group) or Len+DEB-TACE (Len+DEB-TACE group) between July 2019 and June 2021 from eight institutions in China. Objective response rate (ORR), time to progression (TTP), overall survival (OS), and treatment-related adverse events (TRAEs) were compared between the two groups by propensity score-matching (PSM). RESULTS: A total of 205 patients were included. After PSM, 85-paired patients remained in the study cohorts. Patients in the Len+DEB-TACE+HAIC group had higher ORR (61.2% vs. 34.1%, P < 0.001), longer TTP (median, 9.8 vs. 5.9 months, P < 0.001), and prolonged OS (median, 16.7 vs. 12.5 months, P < 0.001) than those in the Len+DEB-TACE group. The ORR and TTP of both intrahepatic tumor (ORR: 64.7% vs. 36.5%, P < 0.001; median TTP: 10.7 vs. 7.0 months, P < 0.001) and PVTT (ORR: 74.1% vs. 47.1%, P < 0.001; median TTP: 17.4 vs. 7.6 months, P < 0.001) were better in the Len+DEB-TACE+HAIC group than the Len+DEB-TACE group. The frequency of grade 3-4 TRAEs in the Len+DEB-TACE+HAIC group were comparable to those in the Len+DEB-TACE group (38.8% vs. 34.1%, P = 0.524). CONCLUSION: The addition of HAIC to Len+DEB-TACE significantly improved ORR, TTP, and OS over Len+DEB-TACE with an acceptable safety profile for large HCC with major PVTT.

7.
Synth Syst Biotechnol ; 9(4): 733-741, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38911060

RESUMO

Collagen XVII (COL17) is a transmembrane protein that mediates skin homeostasis. Due to expression of full length collagen was hard to achieve in microorganisms, arising the needs for selection of collagen fragments with desired functions for microbial biosynthesis. Here, COL17 fragments (27-33 amino acids) were extracted and replicated 16 times for recombinant expression in Escherichia coli. Five variants were soluble expressed, with the highest yield of 223 mg/L. The fusion tag was removed for biochemical and biophysical characterization. Circular dichroism results suggested one variant (sample-1707) with a triple-helix structure at >37 °C. Sample-1707 can assemble into nanofiber (width, 5.6 nm) and form hydrogel at 3 mg/mL. Sample-1707 was shown to induce blood clotting and promote osteoblast differentiation. Furthermore, sample-1707 exhibited high capacity to induce mouse hair follicle stem cells differentiation and osteoblast migration, demonstrating a high capacity to induce skin cell regeneration and promote wound healing. A strong hydrogel was prepared from a chitosan and sample-1707 complex with a swelling rate of >30 % higher than simply using chitosan. Fed-batch fermentation of sample-1707 with a 5-L bioreactor obtained a yield of 600 mg/L. These results support the large-scale production of sample-1707 as a biomaterial for use in the skin care industry.

8.
Sensors (Basel) ; 24(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38931671

RESUMO

A novel fiber sensor for the refractive index sensing of seawater based on a Mach-Zehnder interferometer has been demonstrated. The sensor consisted of a single-mode fiber (SMF)-no-core fiber (NCF)-single-mode fiber structure (shortened to an SNS structure) with a large lateral offset spliced between the two sections of a multimode fiber (MMF). Optimization studies of the multimode fiber length, offset SNS length, and vertical axial offset distance were performed to improve the coupling efficiency of interference light and achieve the best extinction ratio. In the experiment, a large lateral offset sensor was prepared to detect the refractive index of various ratios of saltwater, which were used to simulate seawater environments. The sensor's sensitivity was up to -13,703.63 nm/RIU and -13,160 nm/RIU in the refractive index range of 1.3370 to 1.3410 based on the shift of the interference spectrum. Moreover, the sensor showed a good linear response and high stability, with an RSD of only 0.0089% for the trough of the interference in air over 1 h.

9.
BMC Microbiol ; 24(1): 212, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877418

RESUMO

BACKGROUND: Long-term treatment with trimethoprim-sulfamethoxazole (SXT) can lead to the formation of small-colony variants (SCVs) of Staphylococcus aureus. However, the mechanism behind SCVs formation remains poorly understood. In this study, we explored the phenotype and omics-based characterization of S. aureus SCVs induced by SXT and shed light on the potential causes of SCV formation. METHODS: Stable SCVs were obtained by continuously treating S. aureus isolates using 12/238 µg/ml of SXT, characterized by growth kinetics, antibiotic susceptibility testing, and auxotrophism test. Subsequently, a pair of representative strains (SCV and its parental strain) were selected for genomic, transcriptomic and metabolomic analysis. RESULTS: Three stable S. aureus SCVs were successfully screened and proven to be homologous to their corresponding parental strains. Phenotypic tests showed that all SCVs were non-classical mechanisms associated with impaired utilization of menadione, heme and thymine, and exhibited slower growth and higher antibiotic minimum inhibitory concentrations (MICs), compared to their corresponding parental strains. Genomic data revealed 15 missense mutations in 13 genes in the representative SCV, which were involved in adhesion, intramolecular phosphate transfer on ribose, transport pathways, and phage-encoded proteins. The combination analysis of transcriptome and metabolome identified 35 overlapping pathways possible associated with the phenotype switching of S. aureus. These pathways mainly included changes in metabolism, such as purine metabolism, pyruvate metabolism, amino acid metabolism, and ABC transporters, which could play a crucial role in promoting SCVs development by affecting nucleic acid synthesis and energy metabolism in bacteria. CONCLUSION: This study provides profound insights into the causes of S. aureus SCV formation induced by SXT. The findings may offer valuable clues for developing new strategies to combat S. aureus SCV infections.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Combinação Trimetoprima e Sulfametoxazol , Staphylococcus aureus/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Antibacterianos/farmacologia , Metabolômica , Humanos , Genômica , Fenótipo , Infecções Estafilocócicas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Multiômica
10.
FEBS J ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865576

RESUMO

Hemoglobins, with heme as a cofactor, are functional proteins that have extensive applications in the fields of artificial oxygen carriers and foods. Although Saccharomyces cerevisiae is an ideal host for hemoglobin synthesis, it lacks a suitable transport system to utilize additional heme for active expression of hemoglobins, resulting in the cellular aggregation and degradation of the latter. Here, an effective heme importer, heme-responsive gene 4 (Hrg-4), was selected from six candidates through the comparison of effects on the growth rates of Δhem1 S. cerevisiae strain and the activities of various hemoglobins when supplemented with 5 mg·L-1 exogenous heme. Additionally, to counter the instability of plasmid-based expression and the metabolic burden introduced from overexpressing Hrg-4, a series of hrg-4 integrated strains were constructed and the best engineered strain with five copies of hrg-4 was chosen. We found that this engineered strain was associated with an increased binding rate of heme in monomeric leghemoglobin and multimeric human hemoglobin (76.3% and 16.5%, respectively), as well as an enhanced expression of both hemoglobins (52.8% and 17.0%, respectively). Thus, the engineered strain with improved heme uptake can be used to efficiently synthesize other heme-binding proteins and enzymes in S. cerevisiae.

11.
Metab Eng ; 84: 59-68, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38839038

RESUMO

The development of a heme-responsive biosensor for dynamic pathway regulation in eukaryotes has never been reported, posing a challenge for achieving the efficient synthesis of multifunctional hemoproteins and maintaining intracellular heme homeostasis. Herein, a biosensor containing a newly identified heme-responsive promoter, CRISPR/dCas9, and a degradation tag N-degron was designed and optimized to fine-tune heme biosynthesis in the efficient heme-supplying Pichia pastoris P1H9 chassis. After identifying literature-reported promoters insensitive to heme, the endogenous heme-responsive promoters were mined by transcriptomics, and an optimal biosensor was screened from different combinations of regulatory elements. The dynamic regulation pattern of the biosensor was validated by the transcriptional fluctuations of the HEM2 gene involved in heme biosynthesis and the subsequent responsive changes in intracellular heme titers. We demonstrate the efficiency of this regulatory system by improving the production of high-active porcine myoglobin and soy hemoglobin, which can be used to develop artificial meat and artificial metalloenzymes. Moreover, these findings can offer valuable strategies for the synthesis of other hemoproteins.

12.
PLoS One ; 19(6): e0303419, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38857228

RESUMO

The Butuo Black Sheep (BBS) is well-known for its ability to thrive at high altitudes, resist diseases, and produce premium-quality meat. Nonetheless, there is insufficient data regarding its genetic diversity and population-specific Single nucleotide polymorphisms (SNPs). This paper centers on the genetic diversity of (BBS). The investigation conducted a whole-genome resequencing of 33 BBS individuals to recognize distinct SNPs exclusive to BBS. The inquiry utilized bioinformatic analysis to identify and explain SNPs and pinpoint crucial mutation sites. The findings reveal that reproductive-related genes (GHR, FSHR, PGR, BMPR1B, FST, ESR1), lipid-related genes (PPARGC1A, STAT6, DGAT1, ACACA, LPL), and protein-related genes (CSN2, LALBA, CSN1S1, CSN1S2) were identified as hub genes. Functional enrichment analysis showed that genes associated with reproduction, immunity, inflammation, hypoxia, PI3K-Akt, and AMPK signaling pathways were present. This research suggests that the unique ability of BBS to adapt to low oxygen levels in the plateau environment may be owing to mutations in a variety of genes. This study provides valuable insights into the genetic makeup of BBS and its potential implications for breeding and conservation efforts. The genes and SPNs identified in this study could serve as molecular markers for BBS.


Assuntos
Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma , Animais , Ovinos/genética , Variação Genética , Adaptação Fisiológica/genética
13.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1963-1971, 2024 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-38914504

RESUMO

Industrial biotechnology is regarded as the most promising technology for sustainable industrial development. The advancement of synthetic biology creates new opportunities and infinite possibilities for the progress of industrial biotechnology. Fermentation engineering is the grab and foothold of the industrialization of all the biotechnologies. Our teaching team optimized the teaching content and innovated the teaching mode to establish a teaching system of synthetic biology matching fermentation engineering. We highlighted the teaching characteristics (telling fermentation story cultivated the craftsmanship spirit; bioeconomic education strengthened the engineering thinking; bioethics and safety education fostered a sense of responsibility), then we summarized and prospected the teaching reform of this course. We believe that the teaching reform of synthetic biology will improve the learning performance of postgraduates, provide a reference for the teaching of synthetic biology in related fields, and promote the development of industrial biotechnology (strengthening the innovation capability in biological manufacturing and cultivating new momentum for bioeconomy).


Assuntos
Biotecnologia , Fermentação , Biologia Sintética , Educação de Pós-Graduação , Ensino , Engenharia Metabólica
14.
J Agric Food Chem ; 72(20): 11652-11662, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38738910

RESUMO

Pectin lyases (PNLs) can enhance juice clarity and flavor by degrading pectin in highly esterified fruits, but their inadequate acid resistance leads to rapid activity loss in juice. This study aimed to improve the acid resistance of Aspergillus niger PNL pelA through surface charge design. A modification platform was established by fusing pelA with a protein tag and expressing the fusion enzyme in Escherichia coli. Four single-point mutants were identified to increase the surface charge using computational tools. Moreover, the combined mutant M6 (S514D/S538E) exhibited 99.8% residual activity at pH 3.0. The M6 gene was then integrated into the A. niger genome using a multigene integration system to obtain the recombinant PNL AM6. Notably, AM6 improved the light transmittance of orange juice to 45.3%, which was 8.39 times higher than that of pelA. In conclusion, AM6 demonstrated the best-reported acid resistance, making it a promising candidate for industrial juice clarification.


Assuntos
Aspergillus niger , Sucos de Frutas e Vegetais , Proteínas Fúngicas , Polissacarídeo-Liases , Aspergillus niger/enzimologia , Aspergillus niger/genética , Sucos de Frutas e Vegetais/análise , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Polissacarídeo-Liases/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Concentração de Íons de Hidrogênio , Manipulação de Alimentos , Ácidos/química , Ácidos/metabolismo , Ácidos/farmacologia , Citrus sinensis/química , Pectinas/química , Pectinas/metabolismo , Estabilidade Enzimática
15.
Biotechnol Lett ; 46(4): 545-558, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38717663

RESUMO

To enhance the import of heme for the production of active hemoproteins in Escherichia coli C41 (DE3) lacking the special heme import system, heme receptor ChuA from E. coli Nissle 1917 was modified through molecular docking and the other components (ChuTUV) for heme import was overexpressed, while heme import was tested through growth assay and heme sensor HS1 detection. A ChuA mutant G360K was selected, which could import 3.91 nM heme, compared with 2.92 nM of the wild-type ChuA. In addition, it presented that the expression of heme transporters ChuTUV was not necessary for heme import. Based on the modification of ChuA (G360K), the titer of human hemoglobin and the peroxidase activity of leghemoglobin reached 1.19 µg g-1 DCW and 24.16 103 U g-1 DCW, compared with 1.09 µg g-1 DCW and 21.56 103 U g-1 DCW of the wild-type ChuA, respectively. Heme import can be improved through the modification of heme receptor and the engineered strain with improved heme import has a potential to efficiently produce high-active hemoproteins.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Heme , Hemoglobinas , Escherichia coli/genética , Escherichia coli/metabolismo , Heme/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hemoglobinas/metabolismo , Hemoglobinas/genética , Humanos , Simulação de Acoplamento Molecular , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética
16.
Adv Mater ; : e2402979, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811011

RESUMO

Copper (Cu) nanomaterials are a unique kind of electrocatalysts for high-value multi-carbon production in carbon dioxide reduction reaction (CO2RR), which holds enormous potential in attaining carbon neutrality. However, phase engineering of Cu nanomaterials remains challenging, especially for the construction of unconventional phase Cu-based asymmetric heteronanostructures. Here the site-selective growth of Cu on unusual phase gold (Au) nanorods, obtaining three kinds of heterophase fcc-2H-fcc Au-Cu heteronanostructures is reported. Significantly, the resultant fcc-2H-fcc Au-Cu Janus nanostructures (JNSs) break the symmetric growth mode of Cu on Au. In electrocatalytic CO2RR, the fcc-2H-fcc Au-Cu JNSs exhibit excellent performance in both H-type and flow cells, with Faradaic efficiencies of 55.5% and 84.3% for ethylene and multi-carbon products, respectively. In situ characterizations and theoretical calculations reveal the co-exposure of 2H-Au and 2H-Cu domains in Au-Cu JNSs diversifies the CO* adsorption configurations and promotes the CO* spillover and subsequent C-C coupling toward ethylene generation with reduced energy barriers.

17.
J Agric Food Chem ; 72(19): 10995-11001, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701424

RESUMO

The titer of the microbial fermentation products can be increased by enzyme engineering. l-Sorbosone dehydrogenase (SNDH) is a key enzyme in the production of 2-keto-l-gulonic acid (2-KLG), which is the precursor of vitamin C. Enhancing the activity of SNDH may have a positive impact on 2-KLG production. In this study, a computer-aided semirational design of SNDH was conducted. Based on the analysis of SNDH's substrate pocket and multiple sequence alignment, three modification strategies were established: (1) expanding the entrance of SNDH's substrate pocket, (2) engineering the residues within the substrate pocket, and (3) enhancing the electron transfer of SNDH. Finally, mutants S453A, L460V, and E471D were obtained, whose specific activity was increased by 20, 100, and 10%, respectively. In addition, the ability of Gluconobacter oxidans WSH-004 to synthesize 2-KLG was improved by eliminating H2O2. This study provides mutant enzymes and metabolic engineering strategies for the microbial-fermentation-based production of 2-KLG.


Assuntos
Proteínas de Bactérias , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Gluconobacter/enzimologia , Gluconobacter/genética , Gluconobacter/metabolismo , Açúcares Ácidos/metabolismo , Açúcares Ácidos/química , Fermentação , Engenharia de Proteínas , Engenharia Metabólica , Desidrogenases de Carboidrato/metabolismo , Desidrogenases de Carboidrato/genética , Desidrogenases de Carboidrato/química , Cinética
18.
ACS Nano ; 18(22): 14403-14413, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38775684

RESUMO

The highly reversible plating/stripping of Zn is plagued by dendrite growth and side reactions on metallic Zn anodes, retarding the commercial application of aqueous Zn-ion batteries. Herein, a distinctive nano dual-phase diamond (NDPD) comprised of an amorphous-crystalline heterostructure is developed to regulate Zn deposition and mechanically block dendrite growth. The rich amorphous-crystalline heterointerfaces in the NDPD endow modified Zn anodes with enhanced Zn affinity and result in homogeneous nucleation. In addition, the unparalleled hardness of the NDPD effectively overcomes the high growth stress of dendrites and mechanically impedes their proliferation. Moreover, the hydrophobic surfaces of the NDPD facilitate the desolvation of hydrate Zn2+ and prevent water-mediated side reactions. Consequently, the Zn@NDPD presents an ultrastable lifespan exceeding 3200 h at 5 mA cm-2 and 1 mAh cm-2. The practical application potential of Zn@NDPD is further demonstrated in full cells. This work exhibits the great significance of a chemical-mechanical synergistic anode modification strategy in constructing high-performance aqueous Zn-ion batteries.

19.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38701417

RESUMO

Transcription factors (TFs) are proteins essential for regulating genetic transcriptions by binding to transcription factor binding sites (TFBSs) in DNA sequences. Accurate predictions of TFBSs can contribute to the design and construction of metabolic regulatory systems based on TFs. Although various deep-learning algorithms have been developed for predicting TFBSs, the prediction performance needs to be improved. This paper proposes a bidirectional encoder representations from transformers (BERT)-based model, called BERT-TFBS, to predict TFBSs solely based on DNA sequences. The model consists of a pre-trained BERT module (DNABERT-2), a convolutional neural network (CNN) module, a convolutional block attention module (CBAM) and an output module. The BERT-TFBS model utilizes the pre-trained DNABERT-2 module to acquire the complex long-term dependencies in DNA sequences through a transfer learning approach, and applies the CNN module and the CBAM to extract high-order local features. The proposed model is trained and tested based on 165 ENCODE ChIP-seq datasets. We conducted experiments with model variants, cross-cell-line validations and comparisons with other models. The experimental results demonstrate the effectiveness and generalization capability of BERT-TFBS in predicting TFBSs, and they show that the proposed model outperforms other deep-learning models. The source code for BERT-TFBS is available at https://github.com/ZX1998-12/BERT-TFBS.


Assuntos
Redes Neurais de Computação , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Sítios de Ligação , Algoritmos , Biologia Computacional/métodos , Humanos , Aprendizado Profundo , Ligação Proteica
20.
Circulation ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708602

RESUMO

BACKGROUND: Exercise-induced physiological cardiac growth regulators may protect the heart from ischemia/reperfusion (I/R) injury. Homeobox-containing 1 (Hmbox1), a homeobox family member, has been identified as a putative transcriptional repressor and is downregulated in the exercised heart. However, its roles in exercise-induced physiological cardiac growth and its potential protective effects against cardiac I/R injury remain largely unexplored. METHODS: We studied the function of Hmbox1 in exercise-induced physiological cardiac growth in mice after 4 weeks of swimming exercise. Hmbox1 expression was then evaluated in human heart samples from deceased patients with myocardial infarction and in the animal cardiac I/R injury model. Its role in cardiac I/R injury was examined in mice with adeno-associated virus 9 (AAV9) vector-mediated Hmbox1 knockdown and in those with cardiac myocyte-specific Hmbox1 ablation. We performed RNA sequencing, promoter prediction, and binding assays and identified glucokinase (Gck) as a downstream effector of Hmbox1. The effects of Hmbox1 together with Gck were examined in cardiomyocytes to evaluate their cell size, proliferation, apoptosis, mitochondrial respiration, and glycolysis. The function of upstream regulator of Hmbox1, ETS1, was investigated through ETS1 overexpression in cardiac I/R mice in vivo. RESULTS: We demonstrated that Hmbox1 downregulation was required for exercise-induced physiological cardiac growth. Inhibition of Hmbox1 increased cardiomyocyte size in isolated neonatal rat cardiomyocytes and human embryonic stem cell-derived cardiomyocytes but did not affect cardiomyocyte proliferation. Under pathological conditions, Hmbox1 was upregulated in both human and animal postinfarct cardiac tissues. Furthermore, both cardiac myocyte-specific Hmbox1 knockout and AAV9-mediated Hmbox1 knockdown protected against cardiac I/R injury and heart failure. Therapeutic effects were observed when sh-Hmbox1 AAV9 was administered after I/R injury. Inhibition of Hmbox1 activated the Akt/mTOR/P70S6K pathway and transcriptionally upregulated Gck, leading to reduced apoptosis and improved mitochondrial respiration and glycolysis in cardiomyocytes. ETS1 functioned as an upstream negative regulator of Hmbox1 transcription, and its overexpression was protective against cardiac I/R injury. CONCLUSIONS: Our studies unravel a new role for the transcriptional repressor Hmbox1 in exercise-induced physiological cardiac growth. They also highlight the therapeutic potential of targeting Hmbox1 to improve myocardial survival and glucose metabolism after I/R injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...