Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 126: 58-69, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503784

RESUMO

Co-exposure to heavy metal and antibiotic pollution might result in complexation and synergistic interactions, affecting rice growth and further exacerbating pollutant enrichment. Therefore, our study sought to clarify the influence of different Tetracycline (TC) and Cadmium(Cd) concentration ratios (both alone and combined) on rice growth, pollutant accumulation, and transportation during the tillering stage in hydroponic system. Surprisingly, our findings indicated that the interaction between TC and Cd could alleviate the toxic effects of TC/Cd on aerial rice structures and decrease pollutant burdens during root elongation. In contrast, TC and Cd synergistically promoted the accumulation of TC/Cd in rice roots. However, their interaction increased the accumulation of TC in roots while decreasing the accumulation of Cd when the toxicant doses increased. The strong affinity of rice to Cd promoted its upward transport from the roots, whereas the toxic effects of TC reduced TC transport. Therefore, the combined toxicity of the two pollutants inhibited their upward transport. Additionally, a low concentration of TC promoted the accumulation of Cd in rice mainly in the root tip. Furthermore, a certain dose of TC promoted the upward migration of Cd from the root tip. Laser ablation-inductively coupled plasma mass spectrometry demonstrated that Cd mainly accumulated in the epidermis and stele of the root, whereas Fe mainly accumulated in the epidermis, which inhibited the absorption and accumulation of Cd by the rice roots through the generation of a Fe plaque. Our findings thus provide insights into the effects of TC and Cd co-exposure on rice growth.


Assuntos
Poluentes Ambientais , Compostos Heterocíclicos , Oryza , Cádmio/toxicidade , Tetraciclina , Antibacterianos
2.
Sci Total Environ ; 811: 152283, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34902411

RESUMO

Tetracycline (TC), a widely used antibiotic, is frequently detected in soil environments. It has a strong tendency to form complexes with metals, including iron (oxyhydr)oxide. In this study, ferrihydrite (Fh), a representative iron oxyhydroxide of the iron plaques on the surface of plant roots, was chosen to study the contributions of iron oxyhydroxide on the environmental fate of TC in the rhizosphere environment. Fh adsorption isotherm of TC showed good fitting to the Freundlich model, and the Fh adsorption capacity of TC was found much larger than the other iron oxyhydroxide of high crystallinity. The adsorption mechanisms mainly included electrostatic interaction, H-bonding, and complexation. The results of FTIR and XPS spectra revealed that tricarbonylamide, dimethylamino, and the hydroxyl in the B ring of TC were mainly responsible for the complexation with Fh surface hydroxyl groups. Furthermore, it should be noted that the adsorbed TC on Fh could be degraded and the degradation kinetics of TC better fitted to the pseudo-second-order model. Fh could promote electron transfer from TC to Fe(III) on the Fh surface, which led to the degradation of TC and the formation of Fe(II) ions. The degradation pathways of TC mainly involved three reactions: hydroxylation, dealkylation, and deamination. This study provides mechanistic insights on TC-Fh interaction, which improves the understanding of TC fate in the rhizosphere environment.


Assuntos
Compostos Férricos , Tetraciclina , Adsorção , Antibacterianos
3.
Water Res ; 186: 116316, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829180

RESUMO

Nanoplastics derived from degradation of micro- or macroplastics are emerging contaminants in aquatic environments, where their fate and transport as well as toxicity are affected by aggregation. This study employed time-resolved dynamic light scattering to investigate the aggregation kinetics of polystyrene nanoplastics (PSNPs) in the presence of four macromolecules (sodium alginate (SA), bovine serum albumin (BSA), extracellular polymeric substance (EPS), and Suwannee River humic acid (HA)) in solutions containing monovalent (NaCl) and divalent (CaCl2) salts at different pH. Our results showed that the macromolecules enhanced PSNP stability in NaCl solutions but destabilized PSNPs in CaCl2 solutions at pH 6. In NaCl solutions, macromolecules inhibited PSNP aggregation due to steric hindrance originated from macromolecular layer adsorbed on PSNPs. The strongest stabilization effect was observed for BSA having the greatest hydrodynamic adsorption layer thickness of 21.9 nm, followed by HA, EPS, and SA. In CaCl2 solutions, SA significantly destabilized PSNPs via alginate bridging with Ca2+, which enhanced with concentrations of SA and CaCl2. The destabilization effects of other three macromolecules in CaCl2 solutions were governed by the interplay among molecular bridging, charge screening, and steric hindrance. An increased pH in NaCl or CaCl2 solutions containing macromolecules all stabilized PSNPs due to elevated electrostatic repulsion, except that SA destabilized PSNPs in CaCl2 solutions via enhanced molecular bridging. The stabilization effect of macromolecules may also compete with the destabilization effect under seawater condition. This study suggested that PSNP aggregation in aquatic environments could be strongly affected by macromolecules and solution chemistry.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Microplásticos , Adsorção , Substâncias Húmicas/análise , Cinética
4.
Environ Pollut ; 258: 113803, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31864922

RESUMO

Although nanoscale surface roughness has been theoretically demonstrated to be a crucial factor in the interaction of colloids and surfaces, little experimental research has investigated the influence of roughness on colloid or silver nanoparticle (AgNP) retention and release in porous media. This study experimentally examined AgNP retention and release using two sands with very different surface roughness properties over a range of solution pH and/or ionic strength (IS). AgNP transport was greatly enhanced on the relatively smooth sand in comparison to the rougher sand, at higher pH, and lower IS and fitted model parameters showed systematic changes with these physicochemical factors. Complete release of the retained AgNPs was observed from the relatively smooth sand when the solution IS was decreased from 40 mM NaCl to deionized (DI) water and then the solution pH was increased from 6.5 to 10. Conversely, less than 40% of the retained AgNPs was released in similar processes from the rougher sand. These observations were explained by differences in the surface roughness of the two sands which altered the energy barrier height and the depth of the primary minimum with solution chemistry. Limited numbers of AgNPs apparently interacted in reversible, shallow primary minima on the smoother sand, which is consistent with the predicted influence of a small roughness fraction (e.g., pillar) on interaction energies. Conversely, larger numbers of AgNPs interacted in deeper primary minima on the rougher sand, which is consistent with the predicted influence at concave locations. These findings highlight the importance of surface roughness and indicate that variations in sand surface roughness can greatly change the sensitivity of nanoparticle transport to physicochemical factors such as IS and pH due to the alteration of interaction energy and thus can strongly influence nanoparticle mobility in the environment.


Assuntos
Nanopartículas Metálicas/química , Prata/química , Coloides , Nanopartículas , Concentração Osmolar , Porosidade , Dióxido de Silício , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...