Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
bioRxiv ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38979379

RESUMO

Background & Aims: Single-cell RNA sequencing (scRNA) has empowered many insights into gastrointestinal microenvironments. However, profiling human biopsies using droplet-based scRNA (D-scRNA) is challenging since it requires immediate processing to minimize epithelial cell damage. In contrast, picowell-based (P-scRNA) platforms permit short-term frozen storage before sequencing. We compared P- and D-scRNA platforms on cells derived from human colon biopsies. Methods: Endoscopic rectosigmoid mucosal biopsies were obtained from two adults and conducted D-scRNA (10X Chromium) and P-scRNA (Honeycomb HIVE) in parallel using an individual's pool of single cells (> 10,000 cells/participant). Three experiments were performed to evaluate 1) P-scRNA with cells under specific storage conditions (immediately processed [fresh], vs. frozen at -20C vs. -80C [2 weeks]); 2) fresh P-scRNA versus fresh D-scRNA; and 3) P-scRNA stored at -80C with fresh D-scRNA. Results: Significant recovery of loaded cells was achieved for fresh (80.9%) and -80C (48.5%) P-scRNA and D-scRNA (76.6%), but not -20C P-scRNA (3.7%). However, D-scRNA captures more typeable cells among recovered cells (71.5% vs. 15.8% Fresh and 18.4% -80C P-scRNA), and these cells exhibit higher gene coverage at the expense of higher mitochondrial read fractions across most cell types. Cells profiled using D-scRNA demonstrated more consistent gene expression profiles among the same cell type than those profiled using P-scRNA. Significant intra-cell-type differences were observed in profiled gene classes across platforms. Conclusions: Our results highlight non-overlapping advantages of P-scRNA and D-scRNA and underscore the need for innovation to enable high-fidelity capture of colonic epithelial cells. The platform-specific variation highlights the challenges of maintaining rigor and reproducibility across studies that use different platforms.

2.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892227

RESUMO

The primary cilium is a microtubule-based sensory organelle that plays a critical role in signaling pathways and cell cycle progression. Defects in the structure and/or function of the primary cilium result in developmental diseases collectively known as ciliopathies. However, the constituents and regulatory mechanisms of the primary cilium are not fully understood. In recent years, the activity of the epigenetic modifier SMYD3 has been shown to play a key role in the regulation of cell cycle progression. However, whether SMYD3, a histone/lysine methyltransferase, contributes to the regulation of ciliogenesis remains unknown. Here, we report that SMYD3 drives ciliogenesis via the direct and indirect regulation of cilia-associated components. We show that SMYD3 is a novel component of the distal appendage and is required for centriolar appendage assembly. The loss of SMYD3 decreased the percentage of ciliated cells and resulted in the formation of stumpy cilia. We demonstrated that SMYD3 modulated the recruitment of centrosome proteins (Cep164, Fbf1, Ninein, Ttbk2 and Cp110) and the trafficking of intraflagellar transport proteins (Ift54 and Ift140) important for cilia formation and maintenance, respectively. In addition, we showed that SMYD3 regulated the transcription of cilia genes and bound to the promoter regions of C2cd3, Cep164, Ttbk2, Dync2h1 and Cp110. This study provides insights into the role of SMYD3 in cilia biology and suggests that SMYD3-mediated cilia formation/function may be relevant for cilia-dependent signaling in ciliopathies.


Assuntos
Centrossomo , Cílios , Histona-Lisina N-Metiltransferase , Transporte Proteico , Cílios/metabolismo , Humanos , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Centrossomo/metabolismo , Animais , Flagelos/metabolismo , Camundongos , Proteínas Associadas a Centrossomos
3.
Kidney Int ; 106(2): 258-272, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38782200

RESUMO

Alteration of DNA methylation leads to diverse diseases, and the dynamic changes of DNA methylation (DNAm) on sets of CpG dinucleotides in mammalian genomes are termed "DNAm age" and "epigenetic clocks" that can predict chronological age. However, whether and how dysregulation of DNA methylation promotes cyst progression and epigenetic age acceleration in autosomal dominant polycystic kidney disease (ADPKD) remains elusive. Here, we show that DNA methyltransferase 1 (DNMT1) is upregulated in cystic kidney epithelial cells and tissues and that knockout of Dnmt1 and targeting DNMT1 with hydralazine, a safe demethylating agent, delays cyst growth in Pkd1 mutant kidneys and extends life span of Pkd1 conditional knockout mice. With methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq), DNMT1 chromatin immunoprecipitation (ChIP)-sequencing and RNA-sequencing analysis, we identified two novel DNMT1 targets, PTPRM and PTPN22 (members of the protein tyrosine phosphatase family). PTPRM and PTPN22 function as mediators of DNMT1 and the phosphorylation and activation of PKD-associated signaling pathways, including ERK, mTOR and STAT3. With whole-genome bisulfide sequencing in kidneys of patients with ADPKD versus normal individuals, we found that the methylation of epigenetic clock-associated genes was dysregulated, supporting that epigenetic age is accelerated in the kidneys of patients with ADPKD. Furthermore, five epigenetic clock-associated genes, including Hsd17b14, Itpkb, Mbnl1, Rassf5 and Plk2, were identified. Thus, the diverse biological roles of these five genes suggest that their methylation status may not only predict epigenetic age acceleration but also contribute to disease progression in ADPKD.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Epigênese Genética , Camundongos Knockout , Rim Policístico Autossômico Dominante , Canais de Cátion TRPP , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/enzimologia , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Animais , Humanos , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Camundongos , Transdução de Sinais , Modelos Animais de Doenças , Masculino , Progressão da Doença , Rim/patologia , Rim/metabolismo
4.
Sci Immunol ; 9(95): eabq1558, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701190

RESUMO

Steroid resistance poses a major challenge for the management of autoimmune neuroinflammation. T helper 17 (TH17) cells are widely implicated in the pathology of steroid resistance; however, the underlying mechanisms are unknown. In this study, we identified that interleukin-1 receptor (IL-1R) blockade rendered experimental autoimmune encephalomyelitis (EAE) mice sensitive to dexamethasone (Dex) treatment. Interleukin-1ß (IL-1ß) induced a signal transducer and activator of transcription 5 (STAT5)-mediated steroid-resistant transcriptional program in TH17 cells, which promoted inflammatory cytokine production and suppressed Dex-induced anti-inflammatory genes. TH17-specific deletion of STAT5 ablated the IL-1ß-induced steroid-resistant transcriptional program and rendered EAE mice sensitive to Dex treatment. IL-1ß synergized with Dex to promote the STAT5-dependent expression of CD69 and the development of central nervous system (CNS)-resident CD69+ TH17 cells. Combined IL-1R blockade and Dex treatment ablated CNS-resident TH17 cells, reduced EAE severity, and prevented relapse. CD69+ tissue-resident TH17 cells were also detected in brain lesions of patients with multiple sclerosis. These findings (i) demonstrate that IL-1ß-STAT5 signaling in TH17 cells mediates steroid resistance and (ii) identify a therapeutic strategy for reversing steroid resistance in TH17-mediated CNS autoimmunity.


Assuntos
Dexametasona , Encefalomielite Autoimune Experimental , Interleucina-1beta , Fator de Transcrição STAT5 , Células Th17 , Animais , Células Th17/imunologia , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição STAT5/imunologia , Camundongos , Interleucina-1beta/imunologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Camundongos Endogâmicos C57BL , Resistência a Medicamentos , Transdução de Sinais/imunologia , Camundongos Knockout , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/tratamento farmacológico , Feminino , Humanos
5.
Cells ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38534333

RESUMO

The progression of autosomal dominant polycystic kidney disease (ADPKD), an inherited kidney disease, is associated with renal interstitial inflammation and fibrosis. CD74 has been known not only as a receptor of macrophage migration inhibitory factor (MIF) it can also have MIF independent functions. In this study, we report unknown roles and function of CD74 in ADPKD. We show that knockout of CD74 delays cyst growth in Pkd1 mutant kidneys. Knockout and knockdown of CD74 (1) normalize PKD associated signaling pathways, including ERK, mTOR and Rb to decrease Pkd1 mutant renal epithelial cell proliferation, (2) decrease the activation of NF-κB and the expression of MCP-1 and TNF-alpha (TNF-α) which decreases the recruitment of macrophages in Pkd1 mutant kidneys, and (3) decrease renal fibrosis in Pkd1 mutant kidneys. We show for the first time that CD74 functions as a transcriptional factor to regulate the expression of fibrotic markers, including collagen I (Col I), fibronectin, and α-smooth muscle actin (α-SMA), through binding on their promoters. Interestingly, CD74 also regulates the transcription of MIF to form a positive feedback loop in that MIF binds with its receptor CD74 to regulate the activity of intracellular signaling pathways and CD74 increases the expression of MIF in ADPKD kidneys during cyst progression. We further show that knockout of MIF and targeting MIF with its inhibitor ISO-1 not only delay cyst growth but also ameliorate renal fibrosis through blocking the activation of renal fibroblasts and CD74 mediated the activation of TGF-ß-Smad3 signaling, supporting the idea that CD74 is a key and novel upstream regulator of cyst growth and interstitial fibrosis. Thus, targeting MIF-CD74 axis is a novel therapeutic strategy for ADPKD treatment.


Assuntos
Cistos , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Humanos , Fator de Necrose Tumoral alfa , Fibrose
6.
Biomedicines ; 12(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540216

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disorder worldwide and progresses to end-stage renal disease (ESRD). However, its precise mechanism is not fully understood. In recent years, epigenetic reprogramming has drawn increasing attention regarding its effect on cyst growth. However, considering the complexity of epigenetic mechanisms and the broad range of alterations of epigenetic components in ADPKD, identifying more specific epigenetic factors and understanding how they are mechanistically linked to promote cyst growth is relevant for the development of treatment for ADPKD. Here, we find that the histone methyltransferase SMYD3, which activates gene transcription via histone H3 lysine 4 trimethylation (H3K4me3), is upregulated in PKD1 mutant mouse and human ADPKD kidneys. Genetic knockout of SMYD3 in a PKD1 knockout mouse model delayed cyst growth and improved kidney function compared with PKD1 single knockout mouse kidneys. Immunostaining and Western blot assays indicated that SMYD3 regulated PKD1-associated signaling pathways associated with proliferation, apoptosis, and cell cycle effectors in PKD1 mutant renal epithelial cells and tissues. In addition, we found that SMYD3 localized to the centrosome and regulated mitosis and cytokinesis via methylation of α-tubulin at lysine 40. In addition, SMYD3 regulated primary cilia assembly in PKD1 mutant mouse kidneys. In summary, our results demonstrate that overexpression of SMYD3 contributes to cyst progression and suggests targeting SMYD3 as a potential therapeutic strategy for ADPKD.

7.
Am J Respir Cell Mol Biol ; 70(6): 457-467, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38346220

RESUMO

Sepsis is a systemic inflammatory response that requires effective macrophage metabolic functions to resolve ongoing inflammation. Previous work showed that the mechanosensitive cation channel, transient receptor potential vanilloid 4 (TRPV4), mediates macrophage phagocytosis and cytokine production in response to lung infection. Here, we show that TRPV4 regulates glycolysis in a stiffness-dependent manner by augmenting macrophage glucose uptake by GLUT1. In addition, TRPV4 is required for LPS-induced phagolysosome maturation in a GLUT1-dependent manner. In a cecal slurry mouse model of sepsis, TRPV4 regulates sepsis-induced glycolysis as measured by BAL fluid (BALF) lactate and sepsis-induced lung injury as measured by BALF total protein and lung compliance. TRPV4 is necessary for bacterial clearance in the peritoneum to limit sepsis-induced lung injury. It is interesting that BALF lactate is increased in patients with sepsis compared with healthy control participants, supporting the relevance of lung cell glycolysis to human sepsis. These data show that macrophage TRPV4 is required for glucose uptake through GLUT1 for effective phagolysosome maturation to limit sepsis-induced lung injury. Our work presents TRPV4 as a potential target to protect the lung from injury in sepsis.


Assuntos
Transportador de Glucose Tipo 1 , Glicólise , Lesão Pulmonar , Macrófagos , Sepse , Canais de Cátion TRPV , Animais , Canais de Cátion TRPV/metabolismo , Sepse/metabolismo , Sepse/complicações , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Camundongos , Lesão Pulmonar/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Masculino , Glucose/metabolismo , Fagossomos/metabolismo , Líquido da Lavagem Broncoalveolar , Lipopolissacarídeos/farmacologia , Fagocitose , Modelos Animais de Doenças , Pulmão/metabolismo , Pulmão/patologia , Pulmão/imunologia
8.
Cell Death Dis ; 14(12): 795, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052787

RESUMO

Primary cilia are microtubule-based organelles that play important roles in development and tissue homeostasis. Macrophage migration inhibitory factor (MIF) has long been recognized as a secreted cytokine in the pathogenesis of various human diseases, including cancer and autosomal dominant polycystic kidney disease (ADPKD). Unlike other cytokines, unique functional characteristics of intracellular MIF have emerged. In this study, we show that MIF is localized and formed a ring like structure at the proximal end of centrioles, where it regulates cilia biogenesis through affecting 1) the recruitment of TTBK2 to basal body and the removal of CP110 from mother centriole, 2) the accumulation of CEP290 at centriolar satellites, and 3) the trafficking of intraflagellar transport (IFT) related proteins. We also show that MIF functions as a novel transcriptional factor to regulate the expression of genes related to ciliogenesis via binding on the promotors of those genes. MIF also binds chromatin and regulates transcription of genes involved in diverse homeostatic signaling pathways. We identify phosphatidylinositol-5-phosphate 4-kinase type 2 alpha (PIP4K2a) as an upstream regulator of MIF, which interacts with and phosphorylates MIF at S91 to increase its interaction with 14-3-3ζ, resulting in its nuclear translocation and transcription regulation. This study suggests that MIF is a key player in cilia biogenesis and a novel transcriptional regulator in homeostasis, which forward our understanding of how MIF is able to carry out several nonoverlapping functions.


Assuntos
Fatores Inibidores da Migração de Macrófagos , Humanos , Fosforilação , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Cílios/metabolismo , Fosfatos/metabolismo , Proteínas 14-3-3/metabolismo , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo
9.
Cell Host Microbe ; 31(10): 1620-1638.e7, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37776865

RESUMO

Immunoglobulin A (IgA) is an important factor in maintaining homeostasis at mucosal surfaces, yet luminal IgA levels vary widely. Total IgA levels are thought to be driven by individual immune responses to specific microbes. Here, we found that the prebiotic, pectin oligosaccharide (pec-oligo), induced high IgA levels in the small intestine in a T cell-dependent manner. Surprisingly, this IgA-high phenotype was retained after cessation of pec-oligo treatment, and microbiome transmission either horizontally or vertically was sufficient to retain high IgA levels in the absence of pec-oligo. Interestingly, the bacterial taxa enriched in the overall pec-oligo bacterial community differed from IgA-coated microbes in this same community. Rather, a group of ethanol-resistant microbes, highly enriched for Lachnospiraceae bacterium A2, drove the IgA-high phenotype. These findings support a model of intestinal adaptive immunity in which a limited number of microbes can promote durable changes in IgA directed to many symbionts.


Assuntos
Intestinos , Microbiota , Camundongos , Animais , Intestinos/microbiologia , Intestino Delgado , Imunoglobulina A , Bactérias , Mucosa Intestinal/microbiologia
10.
Immunohorizons ; 7(6): 456-466, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37314833

RESUMO

The intestinal mucosa is continually exposed to diverse microbial and dietary Ags, requiring coordinated efforts by specialized populations of regulatory T cells (Tregs) to maintain homeostasis. Suppressive mechanisms used by intestinal Tregs include the secretion of anti-inflammatory cytokines such as IL-10 and TGF-ß. Defects in IL-10 signaling are associated with severe infantile enterocolitis in humans, and mice deficient in IL-10 or its receptors develop spontaneous colitis. To determine the requirement of Foxp3+ Treg-specific IL-10 for protection against colitis, we generated Foxp3-specific IL-10 knockout (KO) mice (IL-10 conditional KO [cKO] mice). Colonic Foxp3+ Tregs isolated from IL-10cKO mice showed impaired ex vivo suppressive function, although IL-10cKO mice maintained normal body weights and developed only mild inflammation over 30 wk of age (in contrast to severe colitis in global IL-10KO mice). Protection from colitis in IL-10cKO mice was associated with an expanded population of IL-10-producing type 1 Tregs (Tr1, CD4+Foxp3-) in the colonic lamina propria that produced more IL-10 on a per-cell basis compared with wild-type intestinal Tr1 cells. Collectively, our findings reveal a role for Tr1 cells in the gut, as they expand to fill a tolerogenic niche in conditions of suboptimal Foxp3+ Treg-mediated suppression and provide functional protection against experimental colitis.


Assuntos
Colite , Linfócitos T Reguladores , Humanos , Animais , Camundongos , Interleucina-10/genética , Colite/prevenção & controle , Linfócitos T CD4-Positivos , Citocinas , Camundongos Knockout , Fatores de Transcrição , Fatores de Transcrição Forkhead/genética
11.
Glycobiology ; 33(11): 943-953, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-37379323

RESUMO

The IgG antibody class forms an important basis of the humoral immune response, conferring reciprocal protection from both pathogens and autoimmunity. IgG function is determined by the IgG subclass, as defined by the heavy chain, as well as the glycan composition at N297, the conserved site of N-glycosylation within the Fc domain. For example, lack of core fucose promotes increased antibody-dependent cellular cytotoxicity, whereas α2,6-linked sialylation by the enzyme ST6Gal1 helps to drive immune quiescence. Despite the immunological significance of these carbohydrates, little is known about how IgG glycan composition is regulated. We previously reported that mice with ST6Gal1-deficient B cells have unaltered IgG sialylation. Likewise, ST6Gal1 released into the plasma by hepatocytes does not significantly impact overall IgG sialylation. Since IgG and ST6Gal1 have independently been shown to exist in platelet granules, it was possible that platelet granules could serve as a B cell-extrinsic site for IgG sialylation. To address this hypothesis, we used a platelet factor 4 (Pf4)-Cre mouse to delete ST6Gal1 in megakaryocytes and platelets alone or in combination with an albumin-Cre mouse to also remove it from hepatocytes and the plasma. The resulting mouse strains were viable and had no overt pathological phenotype. We also found that despite targeted ablation of ST6Gal1, no change in IgG sialylation was apparent. Together with our prior findings, we can conclude that in mice, neither B cells, the plasma, nor platelets have a substantial role in homeostatic IgG sialylation.


Assuntos
Imunoglobulina G , Fatores Imunológicos , Animais , Camundongos , Linfócitos B/metabolismo , Glicosilação , Imunoglobulina G/metabolismo , Polissacarídeos , Sialiltransferases/genética , Sialiltransferases/metabolismo , beta-D-Galactosídeo alfa 2-6-Sialiltransferase
12.
Adv Kidney Dis Health ; 30(3): 245-260, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37088527

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of numerous kidney cysts which leads to kidney failure. ADPKD is responsible for approximately 10% of patients with kidney failure. Overwhelming evidence supports that vasopressin and its downstream cyclic adenosine monophosphate signaling promote cystogenesis, and targeting vasopressin 2 receptor with tolvaptan and other antagonists ameliorates cyst growth in preclinical studies. Tolvaptan is the only drug approved by Food and Drug Administration to treat ADPKD patients at the risk of rapid disease progression. A major limitation of the widespread use of tolvaptan is aquaretic events. This review discusses the potential strategies to improve the tolerability of tolvaptan, the progress on the use of an alternative vasopressin 2 receptor antagonist lixivaptan, and somatostatin analogs. Recent advances in understanding the pathophysiology of PKD have led to new approaches of treatment via targeting different signaling pathways. We review the new pharmacotherapies and dietary interventions of ADPKD that are promising in the preclinical studies and investigated in clinical trials.


Assuntos
Rim Policístico Autossômico Dominante , Insuficiência Renal , Estados Unidos , Humanos , Rim Policístico Autossômico Dominante/tratamento farmacológico , Tolvaptan/uso terapêutico , Antagonistas dos Receptores de Hormônios Antidiuréticos/uso terapêutico , Vasopressinas/uso terapêutico , Receptores de Vasopressinas/metabolismo , Insuficiência Renal/tratamento farmacológico
13.
Kidney Int ; 103(5): 859-871, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36870435

RESUMO

Autosomal dominant polycystic kidney disease is characterized by progressive kidney cyst formation that leads to kidney failure. Tolvaptan, a vasopressin 2 receptor antagonist, is the only drug approved to treat patients with autosomal dominant polycystic kidney disease who have rapid disease progression. The use of tolvaptan is limited by reduced tolerability from aquaretic effects and potential hepatotoxicity. Thus, the search for more effective drugs to slow down the progression of autosomal dominant polycystic kidney disease is urgent and challenging. Drug repurposing is a strategy for identifying new clinical indications for approved or investigational medications. Drug repurposing is increasingly becoming an attractive proposition because of its cost-efficiency and time-efficiency and known pharmacokinetic and safety profiles. In this review, we focus on the repurposing approaches to identify suitable drug candidates to treat autosomal dominant polycystic kidney disease and prioritization and implementation of candidates with high probability of success. Identification of drug candidates through understanding of disease pathogenesis and signaling pathways is highlighted.


Assuntos
Rim Policístico Autossômico Dominante , Humanos , Tolvaptan/uso terapêutico , Rim Policístico Autossômico Dominante/patologia , Reposicionamento de Medicamentos , Antagonistas dos Receptores de Hormônios Antidiuréticos/efeitos adversos , Rim/patologia
14.
Hum Mol Genet ; 32(4): 567-579, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36067023

RESUMO

DNA damage response (DDR) is an important signaling-transduction network that promotes the repair of DNA lesions which can induce and/or support diseases. However, the mechanisms involved in its regulation are not fully understood. Recent studies suggest that the peroxiredoxin 5 (Prdx5) enzyme, which detoxifies reactive oxygen species, is associated to genomic instability and signal transduction. Its role in the regulation of DDR, however, is not well characterized. In this study, we demonstrate a role of Prdx5 in the regulation of the DDR signaling pathway. Knockdown of Prdx5 resulted in DNA damage manifested by the induction of phosphorylated histone H2AX (γ-H2AX) and p53-binding protein 1 (53BP1). We show that Prdx5 regulates DDR through (1) polo-like kinase 1 (Plk1) mediated phosphorylation of ataxia telangiectasia mutated (ATM) kinase to further trigger downstream mediators Chek1 and Chek2; (2) the increase of the acetylation of p53 at lysine 382, stabilizing p53 in the nucleus and enhancing transcription and (3) the induction of autophagy, which regulates the recycling of molecules involved in DDR. We identified Sirt2 as a novel deacetylase of p53 at lysine 382, and Sirt2 regulated the acetylation status of p53 at lysine 382 in a Prdx5-dependent manner. Furthermore, we found that exogenous expression of Prdx5 decreased DNA damage and the activation of ATM in Pkd1 mutant renal epithelial cells, suggesting that Prdx5 may play a protective role from DNA damage in cystic renal epithelial cells. This study identified a novel mechanism of Prdx5 in the regulation of DDR through the ATM/p53/Sirt2 signaling cascade.


Assuntos
Histonas , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Histonas/metabolismo , Peroxirredoxinas/genética , Sirtuína 2/metabolismo , Lisina/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/genética , Fosforilação , Dano ao DNA
15.
Hum Mol Genet ; 32(7): 1114-1126, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36322156

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is driven by mutations in the PKD1 and PKD2 genes, and it is characterized by renal cyst formation, inflammation and fibrosis. Forkhead box protein M1 (FoxM1), a transcription factor of the Forkhead box (Fox) protein super family, has been reported to promote tumor formation, inflammation and fibrosis in many organs. However, the role and mechanism of FoxM1 in regulation of ADPKD progression is still poorly understood. Here, we show that FoxM1 is an important regulator of cyst growth in ADPKD. FoxM1 is upregulated in cyst-lining epithelial cells in Pkd1 mutant mouse kidneys and human ADPKD kidneys. FoxM1 promotes cystic renal epithelial cell proliferation by increasing the expression of Akt and Stat3 and the activation of ERK and Rb. FoxM1 also regulates cystic renal epithelial cell apoptosis through NF-κB signaling pathways. In addition, FoxM1 regulates the recruitment and retention of macrophages in Pkd1 mutant mouse kidneys, a process that is associated with FoxM1-mediated upregulation of monocyte chemotactic protein 1. Targeting FoxM1 with its specific inhibitor, FDI-6, delays cyst growth in rapidly progressing and slowly progressing Pkd1 mutant mouse kidneys. This study suggests that FoxM1 is a central and upstream regulator of ADPKD pathogenesis and provides a rationale for targeting FoxM1 as a therapeutic strategy for ADPKD treatment.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Animais , Humanos , Camundongos , Proliferação de Células/genética , Cistos/genética , Cistos/patologia , Fibrose , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Inflamação/patologia , Rim/metabolismo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Fatores de Transcrição/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
16.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499487

RESUMO

TP53 is the most common mutated gene in human cancer. Mutant p53 protein loses its tumor-suppressor properties and gains oncogenic activity. Mutant p53 is a therapeutic target in a broad range of cancer types. However, how mutant p53 is epigenetically regulated during tumor progression remains elusive. In this study, we found that the upregulation of mutant p53 is mediated by bromodomain protein BRD4 in triple-negative breast cancer (TNBC) cells. Inhibition of BRD4 with its inhibitor JQ1 or knockdown of BRD4 suppressed the transcription of mutant p53, which led to the re-expression of p21, the inhibition of S-phase entry, and colony formation in TNBC cells. BRD4 also positively regulated the transcription of wild-type p53, whereas JQ1 treatment and knockdown of BRD4 decreased the expression of p21 in MCF-7 cells. Knockdown of BRD4 resulted in attenuation of TNBC tumor growth in vivo. Taken together, our results uncover a novel regulatory mechanism of mutant p53 via BRD4, and suggest that the bromodomain inhibitor suppresses tumorigenesis through targeting mutant p53 in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Proteína Supressora de Tumor p53/genética , Proteínas Nucleares/metabolismo , Azepinas/farmacologia , Proteínas de Ciclo Celular/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Triazóis/farmacologia , Triazóis/uso terapêutico , Proliferação de Células
17.
Am J Physiol Renal Physiol ; 323(4): F492-F506, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35979967

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is a debilitating renal neoplastic disorder with limited treatment options. It is characterized by the formation of large fluid-filled cysts that develop from kidney tubules through abnormal cell proliferation and cyst-filling fluid secretion driven by cAMP-dependent Cl- secretion. We tested the effectiveness of the indazole carboxylic acid H2-gamendazole (H2-GMZ), a derivative of lonidamine, to inhibit these processes using in vitro and in vivo models of ADPKD. H2-GMZ was effective in rapidly blocking forskolin-induced, Cl--mediated short-circuit currents in human ADPKD cells, and it significantly inhibited both cAMP- and epidermal growth factor-induced proliferation of ADPKD cells. Western blot analysis of H2-GMZ-treated ADPKD cells showed decreased phosphorylated ERK and decreased hyperphosphorylated retinoblastoma levels. H2-GMZ treatment also decreased ErbB2, Akt, and cyclin-dependent kinase 4, consistent with inhibition of heat shock protein 90, and it decreased levels of the cystic fibrosis transmembrane conductance regulator Cl- channel protein. H2-GMZ-treated ADPKD cultures contained a higher proportion of smaller cells with fewer and smaller lamellipodia and decreased cytoplasmic actin staining, and they were unable to accomplish wound closure even at low H2-GMZ concentrations, consistent with an alteration in the actin cytoskeleton and decreased cell motility. Experiments using mouse metanephric organ cultures showed that H2-GMZ inhibited cAMP-stimulated cyst growth and enlargement. In vivo, H2-GMZ was effective in slowing postnatal cyst formation and kidney enlargement in the Pkd1flox/flox: Pkhd1-Cre mouse model. Thus, H2-GMZ treatment decreases Cl- secretion, cell proliferation, cell motility, and cyst growth. These properties, along with its reported low toxicity, suggest that H2-GMZ might be an attractive candidate for treatment of ADPKD.NEW & NOTEWORTHY Autosomal dominant polycystic kidney disease (ADPKD) is a renal neoplastic disorder characterized by the formation of large fluid-filled cysts that develop from kidney tubules through abnormal cell proliferation and cyst-filling fluid secretion driven by cAMP-dependent Cl- secretion. This study shows that the lonidamine derivative H2-GMZ inhibits Cl- secretion, cell proliferation, and cyst growth, suggesting that it might have therapeutic value for the treatment of ADPKD.


Assuntos
Cistos , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Actinas/metabolismo , Animais , Ácidos Carboxílicos/metabolismo , Proliferação de Células , Células Cultivadas , Colforsina/farmacologia , Quinase 4 Dependente de Ciclina/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Cistos/metabolismo , Família de Proteínas EGF/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Indazóis/metabolismo , Indazóis/farmacologia , Rim/metabolismo , Camundongos , Doenças Renais Policísticas/tratamento farmacológico , Doenças Renais Policísticas/metabolismo , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Superfície Celular
18.
Glycobiology ; 32(9): 803-813, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35746897

RESUMO

The glycosylation of immunoglobulin G (IgG) has attracted increased attention due to the impact of N-glycan modifications at N297 on IgG function, acting primarily through modulation of Fc domain conformation and Fcγ receptor-binding affinities and signaling. However, the mechanisms regulating IgG glycosylation and especially α2,6-sialylation of its N-glycan remain poorly understood. We observed previously that IgG is normally sialylated in mice with B cells lacking the sialyltransferase ST6Gal1. This supported the hypothesis that IgG may be sialylated outside of B cells, perhaps through the action of hepatocyte-released plasma ST6Gal1. Here, we demonstrate that this model is incorrect. Animals lacking hepatocyte expressed ST6Gal1 retain normal IgG α2,6-sialylation despite the lack of detectable ST6Gal1 in plasma. Moreover, we confirmed that B cells were not a redundant source of IgG sialylation. Thus, while α2,6-sialylation is lacking in IgG from mice with germline ablation of ST6Gal1, IgG α2,6-sialylation is normal in mice lacking ST6Gal1 in either hepatocytes or B cells. These results indicate that IgG α2,6-sialylation arises after release from a B cell but is not dependent on plasma-localized ST6Gal1 activity.


Assuntos
Imunoglobulina G , Sialiltransferases , Animais , Glicosilação , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Camundongos , Polissacarídeos/química , Receptores de IgG , Sialiltransferases/genética , Sialiltransferases/metabolismo
19.
Am J Physiol Renal Physiol ; 323(2): F227-F242, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759739

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is an inherited genetic disorder that is caused by mutations in PKD1 or PKD2 genes and is characterized by renal fluid-filled cyst formation and interstitial fibrosis. PKD1 gene mutation results in the upregulation of SET (suppressor of variegation, enhancer of zeste, trithorax) and MYND (myeloid-nervy-DEAF1) domain-containing lysine methyltransferase 2 (SMYD2) in kidneys from Pkd1 mutant mice and patients with ADPKD. However, the role and mechanism of Smyd2 in the regulation of renal fibrosis in ADPKD remains elusive. In the present study, we showed that 1) expression of Smyd2 can be regulated by transforming growth factor (TGF)-ß-Smad3 in normal rat kidney 49F (NRK-49F) cells and mouse fibroblast NIH3T3 cells; 2) knockdown of Smyd2 and inhibition of Smyd2 with its specific inhibitor, AZ505, decreases TGF-ß-induced expression of α-smooth muscle actin, fibronectin, collagen type 1 and 3, and plasminogen activator inhibitor-1 in NRK-49F cells; 3) Smyd2 regulates the transcription of fibrotic marker genes through binding on the promoters of those genes or through methylating histone H3 to indirectly regulate the expression of those genes; and 4) knockout and inhibition of Smyd2 significantly decreases renal fibrosis in Pkd1 knockout mice, supporting that targeting Smyd2 can not only delay cyst growth but also attenuate renal fibrosis in ADPKD. This study identified a cross talk between TGF-ß signaling and Smyd2 in the regulation of fibrotic gene transcription and activation of fibroblasts in cystic kidneys, suggesting that targeting Smyd2 with AZ505 is a potential therapeutic strategy for ADPKD treatment.NEW & NOTEWORTHY Here, we identified a cross talk between SET and MYND domain-containing lysine methyltransferase 2 (Smyd2) and transforming growth factor (TGF)-ß-Smad3 signaling and a synergistic feedback loop between them, in which TGF-ß stimulates expression of Smyd2 in a Smad3-dependent manner, and upregulation of Smyd2 regulates the transcription of TGF-ß and other fibrotic marker genes through direct binding on their promoters or methylating histone H3 indirectly to regulate the transcription of those genes in fibroblasts. Thus, the Smyd2-TGF-ß-Smad3-Smyd2 signaling axis plays an important role in promoting renal fibrosis, and targeting Smyd2 with its specific inhibitor should not only delay cyst growth but also ameliorate renal fibrosis in ADPKD.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Animais , Cistos/metabolismo , Fibrose , Histonas/metabolismo , Rim/metabolismo , Lisina/metabolismo , Metiltransferases/metabolismo , Camundongos , Células NIH 3T3 , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante/metabolismo , Ratos , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo
20.
J Leukoc Biol ; 112(6): 1555-1566, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35726710

RESUMO

The degree of α2,6-linked sialylation on IgG glycans is associated with a variety of inflammatory conditions and is thought to drive IgG anti-inflammatory activity. Previous findings revealed that ablation of ß-galactoside α2,6-sialyltransferase 1 (ST6Gal1) in B cells failed to alter IgG sialylation in vivo, yet resulted in the loss of B cell surface α2,6 sialylation, suggesting divergent pathways for IgG and cell surface glycoprotein glycosylation and trafficking. Employing both B cell hybridomas and ex vivo murine B cells, we discovered that IgG was poorly sialylated by ST6Gal1 and highly core fucosylated by α1,6-fucosyltransferase 8 (Fut8) in cell culture. In contrast, cell surface glycoproteins on IgG-producing cells showed the opposite pattern by flow cytometry, with high α2,6 sialylation and low α1,6 fucosylation. Paired studies further revealed that ex vivo B cell-produced IgG carried significantly less sialylation compared with IgG isolated from the plasma of matched animals, providing evidence that IgG sialylation increases after release in vivo. Finally, confocal analyses demonstrated that IgG poorly localized to subcellular compartments rich in sialylation and ST6Gal1, and strongly to regions rich in fucosylation and Fut8. These findings support a model in which IgG subcellular trafficking diverges from the canonical secretory pathway by promoting Fut8-mediated core fucosylation and limiting exposure to and modification by ST6Gal1, providing a mechanism for why B cell-expressed ST6Gal1 is dispensable for IgG sialylation in vivo.


Assuntos
Linfócitos B , Sialiltransferases , Camundongos , Animais , Sialiltransferases/metabolismo , Glicosilação , Linfócitos B/metabolismo , Fucosiltransferases/metabolismo , Imunoglobulina G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...