Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(11): 5805-5815, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451212

RESUMO

Xylan is the main component of hemicellulose. Complete hydrolysis of xylan requires synergistically acting xylanases, such as ß-d-xylosidases. Salt-tolerant ß-d-xylosidases have significant application benefits, but few reports have explored the critical amino acids affecting the salt tolerance of xylosidases. Herein, the site-directed mutation was used to demonstrate that negative electrostatic potentials generated by 19 acidic residues in the loop regions of the structural surface positively correlated with the improved salt tolerance of GH39 ß-d-xylosidase JB13GH39P28. These mutants showed reduced negative potentials on structural surfaces as well as a 13-43% decrease in stability in 3.0-30.0% (w/v) NaCl. Six key residue sites, D201, D259, D297, D377, D395, and D474, were confirmed to influence both the stability and activity of GH39 ß-d-xylosidase. The activity of the GH39 ß-d-xylosidase was found promoting by SO42- and inhibiting by NO3-. Values of Km and Kcat/Km decreased aggravatedly in 30.0% (w/v) NaCl when mutation operated on residues E179 and D182 in the loop regions of the catalytic domain. Taken together, mutation on acidic residues in loop regions from catalytic and noncatalytic domains may cause the deformation of catalytic pocket and aggregation of protein particles then decrease the stability, binding affinity, and catalytic efficiency of the ß-d-xylosidase.


Assuntos
Tolerância ao Sal , Xilosidases , Xilanos/metabolismo , Cloreto de Sódio , Xilosidases/química , Especificidade por Substrato , Concentração de Íons de Hidrogênio
2.
J Agric Food Chem ; 71(21): 7961-7976, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37192316

RESUMO

The complete degradation of abundant xylan derived from plants requires the participation of ß-xylosidases to produce the xylose which can be converted to xylitol, ethanol, and other valuable chemicals. Some phytochemicals can also be hydrolyzed by ß-xylosidases into bioactive substances, such as ginsenosides, 10-deacetyltaxol, cycloastragenol, and anthocyanidins. On the contrary, some hydroxyl-containing substances such as alcohols, sugars, and phenols can be xylosylated by ß-xylosidases into new chemicals such as alkyl xylosides, oligosaccharides, and xylosylated phenols. Thus, ß-xylosidases shows great application prospects in food, brewing, and pharmaceutical industries. This review focuses on the molecular structures, biochemical properties, and bioactive substance transformation function of ß-xylosidases derived from bacteria, fungi, actinomycetes, and metagenomes. The molecular mechanisms of ß-xylosidases related to the properties and functions are also discussed. This review will serve as a reference for the engineering and application of ß-xylosidases in food, brewing, and pharmaceutical industries.


Assuntos
Xilosidases , Xilosidases/química , Oligossacarídeos , Xilose/metabolismo , Fungos/genética , Fungos/metabolismo
3.
Foods ; 12(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36673490

RESUMO

In recent years, minor ginsenosides have received increasing attention due to their outstanding biological activities, yet they are of extremely low content in wild ginseng. Ginsenoside Rb1, which accounts for 20% of the total ginsenosides, is commonly used as a precursor to produce minor ginsenosides via ß-glucosidases. To date, many research groups have used different approaches to obtain ß-glucosidases that can hydrolyze ginsenoside Rb1. This paper provides a compilation and analysis of relevant literature published mainly in the last decade, focusing on enzymatic hydrolysis pathways, enzymatic characteristics and molecular mechanisms of ginsenoside Rb1 hydrolysis by ß-glucosidases. Based on this, it can be concluded that: (1) The ß-glucosidases that convert ginsenoside Rb1 are mainly derived from bacteria and fungi and are classified as glycoside hydrolase (GH) families 1 and 3, which hydrolyze ginsenoside Rb1 mainly through the six pathways. (2) Almost all of these ß-glucosidases are acidic and neutral enzymes with molecular masses ranging from 44-230 kDa. Furthermore, the different enzymes vary widely in terms of their optimal temperature, degradation products and kinetics. (3) In contrast to the GH1 ß-glucosidases, the GH3 ß-glucosidases that convert Rb1 show close sequence-function relationships. Mutations affecting the substrate binding site might alter the catalytic efficiency of enzymes and yield different prosapogenins. Further studies should focus on elucidating molecular mechanisms and improving overall performances of ß-glucosidases for better application in food and pharmaceutical industries.

4.
Front Microbiol ; 13: 924447, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814689

RESUMO

Inulin is the rich water-soluble storage polysaccharide after starch in nature, and utilization of inulin through hydrolysis of exo-inulinases has attracted much attention. Thermo-halo-alcohol tolerance is essential for exo-inulinase applications, while no report reveals the molecular basis involved in halo-alcohol tolerance of exo-inulinases via experimental data. In this study, two loops of exo-inulinase InuAMN8, including the loop built with 360GHVRLGPQP368 linking domains of Glyco_hydro_32N and Glyco_hydro_32C and another loop built with 169GGAG172 in the catalytic domain, were deleted to generate mutants MutG360Δ9 and MutG169Δ4, respectively. After heterologous expression, purification, and dialysis, InuAMN8, MutG169Δ4, and MutG360Δ9 showed half-lives of 144, 151, and 7 min at 50°C, respectively. InuAMN8 and MutG169Δ4 were very stable, while MutG360Δ9 showed a half-life of approximately 60 min in 5.0% (w/v) NaCl, and they showed half-lives of approximately 60 min in 25.0, 25.0, and 5.0% (w/v) ethanol, respectively. Structural analysis indicated that two cation-π bonds, which contributed to thermal properties of InuAMN8 at high temperatures, broke in MutG360Δ9. Four basic amino acid residues were exposed to the structural surface of MutG360Δ9 and formed positive and neutral electrostatic potential that caused detrimental effects on halo-alcohol tolerance. The study may provide a better understanding of the loop-function relationships that are involved in thermo-halo-alcohol adaptation of enzymes in extreme environment.

5.
J Agric Food Chem ; 69(31): 8610-8624, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34324332

RESUMO

ß-1,4-Xylan is the main component of hemicelluloses in land plant cell walls, whereas ß-1,3-xylan is widely found in seaweed cell walls. Complete hydrolysis of xylan requires a series of synergistically acting xylanases. High-saline environments, such as saline-alkali lands and oceans, frequently occur in nature and are also involved in a broad range of various industrial processes. Thus, salt-tolerant xylanases may contribute to high-salt and marine food processing, aquatic feed production, industrial wastewater treatment, saline-alkali soil improvement, and global carbon cycle, with great commercial and environmental benefits. This review mainly introduces the definition, sources, classification, biochemical and molecular characteristics, adaptation mechanisms, and biotechnological applications of salt-tolerant xylanases. The scope of development for salt-tolerant xylanases is also discussed. It is anticipated that this review would serve as a reference for further development and utilization of salt-tolerant xylanases and other salt-tolerant enzymes.


Assuntos
Endo-1,4-beta-Xilanases , Alga Marinha , Biotecnologia , Hidrólise , Xilanos
6.
Electron J Biotechnol ; 49: 64-71, Jan. 2021. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1291923

RESUMO

BACKGROUND: Manno-oligosaccharides (MOS) is known as a kind of prebiotics. Mannanase plays a key role for the degradation of mannan to produce MOS. In this study, the mannanases of glycoside hydrolase (GH) families 5 Man5HJ14 and GH26 ManAJB13 were employed to prepare MOS from locust bean gum (LBG) and palm kernel cake (PKC). The prebiotic activity and utilization of MOS were assessed in vitro using the probiotic Lactobacillus plantarum strain. RESULTS: Galactomannan from LBG was converted to MOS ranging in size from mannose up to mannoheptose by Man5HJ14 and ManAJB13. Mannoheptose was got from the hydrolysates produced by Man5HJ14, which mannohexaose was obtained from LBG hydrolyzed by ManAJB13. However, the same components of MOS ranging in size from mannose up to mannotetrose were observed between PKC hydrolyzed by the mannanases mentioned above. MOS stability was not affected by high-temperature and high-pressure condition at their natural pH. Based on in vitro growth study, all MOS from LBG and PKC was effective in promoting the growth of L. plantarum CICC 24202, with the strain preferring to use mannose to mannotriose, rather than above mannotetrose. CONCLUSIONS: The effect of mannanases and mannan difference on MOS composition was studied. All of MOS hydrolysates showed the stability in adversity condition and prebiotic activity of L. plantarum, which would have potential application in the biotechnological applications.


Assuntos
Oligossacarídeos/metabolismo , beta-Manosidase/metabolismo , Gomas Vegetais/química , Mananas , Técnicas In Vitro , Estabilidade Enzimática , Sphingomonas , Prebióticos , Fermentação
7.
Bioengineered ; 11(1): 1233-1244, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33131413

RESUMO

Enzymes displaying high activity at low temperatures and good thermostability are attracting attention in many studies. However, improving low-temperature activity along with the thermostability of enzymes remains challenging. In this study, the mutant Mut8S, including eight sites (N61E, K156R, P236E, T243K, D268E, T277D, Q390K, and R409D) mutated from the exo-inulinase InuAGN25, was designed on the basis of increasing the number of salt bridges through comparison between the low-temperature-active InuAGN25 and thermophilic exo-inulinases. The recombinant Mut8S, which was expressed in Escherichia coli, was digested by human rhinovirus 3 C protease to remove the amino acid fusion sequence at N-terminus, producing RfsMut8S. Compared with wild-type RfsMInuAGN25, the mutant RfsMut8S showed (1) lower root mean square deviation values, (2) lower root mean square fluctuation (RMSF) values of residues in six regions of the N and C termini but higher RMSF values in five regions of the catalytic pocket, (3) higher activity at 0-40°C, and (4) better thermostability at 50°C. This study proposes a way to increase low-temperature activity along with a thermostability improvement of exo-inulinase on the basis of increasing the rigidity of the terminus and the flexibility of the catalytic domain. These findings may prove useful in formulating rational designs for increasing the thermal performance of enzymes.


Assuntos
Glicosídeo Hidrolases/metabolismo , Domínio Catalítico , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosídeo Hidrolases/genética , Cinética , Mutagênese/genética , Mutagênese/fisiologia , Temperatura
8.
Bioengineered ; 11(1): 921-931, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32865156

RESUMO

Exo-inulinases are members of the glycoside hydrolase family 32 and function by hydrolyzing inulin into fructose with yields up to 90-95%. The N-terminal tail contributes to enzyme thermotolerance, which plays an important role in enzyme applications. However, the role of N-terminal amino acid residues in the thermal performance and structural properties of exo-inulinases remains to be elucidated. In this study, three and six residues of the N-terminus starting from Gln23 of the exo-inulinase InuAGN25 were deleted and expressed in Escherichia coli. After digestion with human rhinovirus 3 C protease to remove the N-terminal amino acid fusion sequence that may affect the thermolability of enzymes, wild-type RfsMInuAGN25 and its mutants RfsMutNGln23Δ3 and RfsMutNGln23Δ6 were produced. Compared with RfsMInuAGN25, thermostability of RfsMutNGln23Δ3 was enhanced while that of RfsMutNGln23Δ6 was slightly reduced. Compared with the N-terminal structures of RfsMInuAGN25 and RfsMutNGln23Δ6, RfsMutNGln23Δ3 had a higher content of (1) the helix structure, (2) salt bridges (three of which were organized in a network), (3) cation-π interactions (one of which anchored the N-terminal tail). These structural properties may account for the improved thermostability of RfsMutNGln23Δ3. The study provides a better understanding of the N-terminus-function relationships that are useful for rational design of thermostability of exo-inulinases.


Assuntos
Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Estabilidade Enzimática/genética , Estabilidade Enzimática/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosídeo Hidrolases/genética , Mutagênese , Temperatura
9.
Food Chem ; 301: 125266, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31387037

RESUMO

ß-Xylosidase, of the glycoside hydrolase family 43 from Bacillus sp. HJ14, was expressed in Escherichia coli. Recombinant ß-xylosidase (rHJ14GH43) exhibited maximum activity at 25 °C, approximately 15, 45, and 88% of maximum activity at 0, 10, and 20 °C, respectively, and poor stability at temperatures over 20 °C. rHJ14GH43 showed moderate or high activity, but poor stability, in NaCl, KCl, NaNO3, KNO3, Na2SO4, and (NH4)2SO4 at concentrations from 3.0 to 30.0% (w/v). The crystal structure of rHJ14GH43 was resolved and showed higher structural flexibility due to fewer salt bridges and hydrogen bonds compared to mesophilic and thermophilic ß-xylosidases. High structural flexibility is presumed to be a key factor for catalytic adaptations to low temperatures and high salt concentrations. Approximately one-third of the surface of rHJ14GH43 is positively charged, which may be the primary factor responsible for poor stability in high neutral salt environments.


Assuntos
Bacillus/enzimologia , Xilosidases/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/metabolismo , Temperatura
10.
J Biosci Bioeng ; 128(4): 429-437, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31109875

RESUMO

A GH43 bifunctional ß-xylosidase encoding gene (XylRBM26) was cloned from Massilia sp. RBM26 and successfully expressed in Escherichia coli. Recombinant XylRBM26 exhibited ß-xylosidase and α-l-arabinofuranosidase activities. When 4-nitrophenyl-ß-d-xylopyranoside was used as a substrate, the enzyme reached optimal activity at pH 6.5 and 50°C and remained stable at pH 5.0-10.0. Purified XylRBM26 presented good salt tolerance and retained 96.6% activity in 3.5 M NaCl and 77.9% initial activity even in 4.0 M NaCl. In addition, it exhibited high tolerance to xylose with Ki value of 500 mM. This study was the first to identify and characterize NaCl-tolerant ß-xylosidase/α-l-arabinofuranosidase from the gut microbiota. The enzyme's salt, xylose, and alkali stability and resistance to various chemicals make it a potential biocatalyst for the saccharification of lignocellulose, the food industry, and industrial processes conducted in sea water.


Assuntos
Microbioma Gastrointestinal , Genoma Bacteriano , Glicosídeo Hidrolases/metabolismo , Xilosidases/metabolismo , Álcalis , Glicosídeo Hidrolases/genética , Concentração de Íons de Hidrogênio , Especificidade por Substrato , Xilose/metabolismo , Xilosidases/genética
11.
Bioengineered ; 10(1): 71-77, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30982422

RESUMO

ß-N-Acetylglucosaminidases (GlcNAcases) possess many important biological functions and are used for promising applications that are often hampered by low-activity enzymes. We previously demonstrated that most GlcNAcases of the glycoside hydrolase (GH) family 20 showed higher activities than those of other GH families, and we presented two novel GH 20 GlcNAcases that showed higher activities than most GlcNAcases. A highly flexible structure, which was attributed to the presence of to a high proportion of random coils and flexible amino acid residues, was presumed to be a factor in the high activity of GH 20 GlcNAcases. In this study, we further hypothesized that two special positions might play a key role in catalytic activity. The increase in GH 20 GlcNAcase activity might correspond to the increased structural flexibility and substrate affinity of the two positions due to an increase in random coils and amino acid residues, notably acidic Asp and Glu.


Assuntos
Acetilglucosaminidase/química , Ácido Aspártico/química , Proteínas de Bactérias/química , Ácido Glutâmico/química , Acetilglucosaminidase/classificação , Acetilglucosaminidase/metabolismo , Sequência de Aminoácidos , Ácido Aspártico/metabolismo , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Biocatálise , Ácido Glutâmico/metabolismo , Hidrólise , Cinética , Micrococcaceae/química , Micrococcaceae/enzimologia , Paenibacillus/química , Paenibacillus/enzimologia , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Rhizobiaceae/química , Rhizobiaceae/enzimologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Serratia marcescens/química , Serratia marcescens/enzimologia , Streptomyces/química , Streptomyces/enzimologia , Relação Estrutura-Atividade , Especificidade por Substrato
12.
J Agric Food Chem ; 67(11): 3220-3228, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30834749

RESUMO

ß-1,2-Xylosidase activity has not been recorded as an EC subsubclass. In this study, phylogenetic analysis and multiple sequence alignments revealed that characterized ß-xylosidases of glycoside hydrolase family (GH) 39 were classified into the same subgroup with conserved amino acid residue positions participating in substrate recognition. Protein-ligand docking revealed that seven of these positions were probably essential to bind xylose-glucose, which is linked by a ß-1,2-glycosidic bond. Amino acid residues in five of the seven positions are invariant, while those in two of the seven positions are variable with low frequency. Both the wild-type ß-xylosidase rJB13GH39 and its mutants with mutation at the two positions exhibited ß-1,2-xylosidase activity, as they hydrolyzed o-nitrophenyl-ß-d-xylopyranoside and transformed notoginsenosides R1 and R2 to ginsenosides Rg1 and Rh1, respectively. The results suggest that all of these characterized GH 39 ß-xylosidases probably show ß-1,2-xylosidase activity, which should be assigned an EC number with these ß-xylosidases as representatives.


Assuntos
Proteínas de Bactérias/metabolismo , Ginsenosídeos/metabolismo , Sphingomonas/enzimologia , Xilosidases/metabolismo , Bactérias/classificação , Bactérias/enzimologia , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Biotransformação , Ginsenosídeos/química , Hidrólise , Cinética , Estrutura Molecular , Família Multigênica , Filogenia , Sphingomonas/química , Sphingomonas/genética , Especificidade por Substrato , Xilosidases/química , Xilosidases/genética
13.
IEEE Trans Vis Comput Graph ; 25(7): 2362-2377, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29993720

RESUMO

Interactive visualization of large image collections is important and useful in many applications, such as personal album management and user profiling on images. However, most prior studies focus on using low-level visual features of images, such as texture and color histogram, to create visualizations without considering the more important semantic information embedded in images. This paper proposes a novel visual analytic system to analyze images in a semantic-aware manner. The system mainly comprises two components: a semantic information extractor and a visual layout generator. The semantic information extractor employs an image captioning technique based on convolutional neural network (CNN) to produce descriptive captions for images, which can be transformed into semantic keywords. The layout generator employs a novel co-embedding model to project images and the associated semantic keywords to the same 2D space. Inspired by the galaxy metaphor, we further turn the projected 2D space to a galaxy visualization of images, in which semantic keywords and images are visually encoded as stars and planets. Our system naturally supports multi-scale visualization and navigation, in which users can immediately see a semantic overview of an image collection and drill down for detailed inspection of a certain group of images. Users can iteratively refine the visual layout by integrating their domain knowledge into the co-embedding process. Two task-based evaluations are conducted to demonstrate the effectiveness of our system.

14.
J Agric Food Chem ; 66(36): 9465-9472, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30132665

RESUMO

Mining for novel enzymes from new microorganisms is a way to obtain ß-xylosidases with promising applications. A Sphingomonas ß-xylosidase was expressed in Escherichia coli. The purified recombinant enzyme (rJB13GH39) was most active at pH 4.5 and 50 °C, retaining 10%-50% of its maximum activity at 0-20 °C. Most salts and chemical reagents including 3.0%-20.0% (w/v) NaCl showed little or no effect on the enzymatic activity. rJB13GH39 exhibited 71.9% and 55.2% activity in 10.0% and 15.0% (v/v) ethanol, respectively. rJB13GH39 was stable below 60 °C in 3.0%-30.0% (w/v) NaCl, 3.0%-20.0% (v/v) ethanol, and 2.2-87.0 mg/mL trypsin. The enzyme transferred one xylosyl moiety to certain sugars and alcohols. The salt/ethanol tolerance and low-temperature activity of the enzyme may be attributed to its high structural flexibility caused by high proportions of small amino acids ACDGNSTV and random coils.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Etanol/metabolismo , Sphingomonas/enzimologia , Tripsina/metabolismo , Xilosidases/química , Xilosidases/metabolismo , Proteínas de Bactérias/genética , Temperatura Baixa , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cloreto de Sódio/metabolismo , Sphingomonas/química , Sphingomonas/genética , Especificidade por Substrato , Xilose/metabolismo , Xilosidases/genética
15.
Appl Microbiol Biotechnol ; 102(1): 93-103, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29143882

RESUMO

ß-N-Acetylglucosaminidases (GlcNAcases) hydrolyse N-acetylglucosamine-containing oligosaccharides and proteins. These enzymes produce N-acetylglucosamine (GlcNAc) and have a wide range of promising applications in the food, energy, and pharmaceutical industries, such as synergistic degradation of chitin with endo-chitinases and using GlcNAc to produce sialic acid, bioethanol, single-cell proteins, and pharmaceutical therapeutics. GlcNAcases also play an important role in the dynamic balance of cellular O-linked GlcNAc levels, catabolism of ganglioside storage in Tay-Sachs disease, and bacterial cell wall recycling and flagellar assembly. In view of these important biological functions and the wide range of industrial applications of GlcNAcases, this review aims to provide a better understanding of various advances for these enzymes. It focuses on enzymatic properties of GlcNAcases, including substrate specificity, catalytic activity, pH optimum, temperature optimum, thermostability, the effects of various metal ions and organic reagents, and transglycosylation.


Assuntos
Acetilglucosamina/metabolismo , Acetilglucosaminidase/genética , Acetilglucosaminidase/metabolismo , Acetilglucosaminidase/química , Sequência de Aminoácidos , Quitina/metabolismo , Quitinases/metabolismo , Clonagem Molecular , Estabilidade Enzimática , Etanol/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Filogenia , Especificidade por Substrato , Doença de Tay-Sachs/fisiopatologia , Temperatura
16.
J Basic Microbiol ; 57(10): 883-895, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28745827

RESUMO

Catechol 1,2-dioxygenase is the key enzyme that catalyzes the cleavage of the aromatic ring of catechol. We explored the genetic diversity of catechol 1,2-dioxygenase in the fecal microbial metagenome by PCR with degenerate primers. A total of 35 gene fragments of C12O were retrieved from microbial DNA in the feces of pygmy loris. Based on phylogenetic analysis, most sequences were closely related to C12O sequences from Acinetobacter. A full-length C12O gene was directly cloned, heterologously expressed in Escherichia coli, and biochemically characterized. Purified catPL12 had optimum pH and temperature pH 8.0 and 25 °C and retained 31 and 50% of its maximum activity when assayed at 0 and 35 °C, respectively. The enzyme was stable at 25 and 37 °C, retaining 100% activity after pre-incubation for 1 h. The kinetic parameters of catPL12 were determined. The enzyme had apparent Km of 67 µM, Vmax of 7.3 U/mg, and kcat of 4.2 s-1 for catechol, and the cleavage activities for 3-methylcatechol, 4-methylcatechol, and 4-chlorocatechol were much less than for catechol, and no activity with hydroquinone or protocatechuate was detected. This study is the first to report the molecular and biochemical characterizations of a cold-adapted catechol 1,2-dioxygenase from a fecal microbial metagenome.


Assuntos
Catecol 1,2-Dioxigenase/genética , Catecol 1,2-Dioxigenase/metabolismo , Fezes/microbiologia , Variação Genética , Metagenoma , Acinetobacter/enzimologia , Acinetobacter/genética , Animais , Catecol 1,2-Dioxigenase/classificação , Catecóis/metabolismo , Clonagem Molecular , Primers do DNA , Escherichia coli/enzimologia , Escherichia coli/genética , Cinética , Lorisidae/microbiologia , Filogenia , Reação em Cadeia da Polimerase/métodos
17.
Biotechnol Biofuels ; 10: 133, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28546828

RESUMO

BACKGROUND: Xylanases have been widely employed in many industrial processes, and thermophilic xylanases are in great demand for meeting the high-temperature requirements of biotechnological treatments. In this work, we aim to improve the thermostability of XynCDBFV, a glycoside hydrolase (GH) family 11 xylanase from the ruminal fungus Neocallimastix patriciarum, by site-directed mutagenesis. We report favorable mutations at the C-terminus from B-factor comparison and multiple sequence alignment. RESULTS: C-terminal residues 207-NGGA-210 in XynCDBFV were discovered to exhibit pronounced flexibility based on comparison of normalized B-factors. Multiple sequence alignment revealed that beneficial residues 207-SSGS-210 are highly conserved in GH11 xylanases. Thus, a recombinant xylanase, Xyn-MUT, was constructed by substituting three residues (N207S, G208S, A210S) at the C-terminus of XynCDBFV. Xyn-MUT exhibited higher thermostability than XynCDBFV at ≥70 °C. Xyn-MUT showed promising improvement in residual activity with a thermal retention of 14% compared to that of XynCDBFV after 1 h incubation at 80 °C; Xyn-MUT maintained around 50% of the maximal activity after incubation at 95 °C for 1 h. Kinetic measurements showed that the recombinant Xyn-MUT had greater kinetic efficiency than XynCDBFV (Km, 0.22 and 0.59 µM, respectively). Catalytic efficiency values (kcat/Km) of Xyn-MUT also increased (1.64-fold) compared to that of XynCDBFV. Molecular dynamics simulations were performed to explore the improved catalytic efficiency and thermostability: (1) the substrate-binding cleft of Xyn-MUT prefers to open to a larger extent to allow substrate access to the active site residues, and (2) hydrogen bond pairs S208-N205 and S210-A55 in Xyn-MUT contribute significantly to the improved thermostability. In addition, three xylanases with single point mutations were tested, and temperature assays verified that the substituted residues S208 and S210 give rise to the improved thermostability. CONCLUSIONS: This is the first report for GH11 recombinant with improved thermostability based on C-terminus replacement. The resulting Xyn-MUT will be an attractive candidate for industrial applications.

18.
Extremophiles ; 21(4): 699-709, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28432475

RESUMO

ß-N-Acetylglucosaminidases (GlcNAcases) are important for many biological functions and industrial applications. In this study, a glycoside hydrolase family 20 GlcNAcase from Shinella sp. JB10 was expressed in Escherichia coli BL21 (DE3). Compared to many GlcNAcases, the purified recombinant enzyme (rJB10Nag) exhibited a higher specificity activity (538.8 µmol min-1 mg-1) or V max (1030.0 ± 82.1 µmol min-1 mg-1) toward p-nitrophenyl ß-N-acetylglucosaminide and N,N'-diacetylchitobiose (specificity activity of 35.4 µmol min-1 mg-1) and a higher N-acetylglucosaminide tolerance (approximately 50% activity in 70.0 mM N-acetylglucosaminide). The degree of synergy on enzymatic degradation of chitin by a commercial chitinase and rJB10Nag was as high as 2.35. The enzyme was tolerant to most salts, especially 3.0-15.0% (w/v) NaCl and KCl. These biochemical characteristics make the JB10 GlcNAcase a candidate for use in many potential applications, including processing marine materials and the bioconversion of chitin waste. Furthermore, the enzyme has the highest proportions of alanine (16.5%), glycine (10.5%), and random coils (48.8%) with the lowest proportion of α-helices (24.9%) among experimentally characterized GH 20 GlcNAcases from other organisms.


Assuntos
Acetilglucosaminidase/metabolismo , Rhizobiaceae/enzimologia , Acetilglucosaminidase/química , Acetilglucosaminidase/genética , Sequência de Aminoácidos , Clonagem Molecular , Hidrólise , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
19.
BMC Biotechnol ; 17(1): 37, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28399848

RESUMO

BACKGROUND: Enzymatic degradation of chitin has attracted substantial attention because chitin is an abundant renewable natural resource, second only to lignocellulose, and because of the promising applications of N-acetylglucosamine in the bioethanol, food and pharmaceutical industries. However, the low activity and poor tolerance to salts and N-acetylglucosamine of most reported ß-N-acetylglucosaminidases limit their applications. Mining for novel enzymes from new microorganisms is one way to address this problem. RESULTS: A glycoside hydrolase family 20 (GH 20) ß-N-acetylglucosaminidase (GlcNAcase) was identified from Microbacterium sp. HJ5 harboured in the saline soil of an abandoned salt mine and was expressed in Escherichia coli. The purified recombinant enzyme showed specific activities of 1773.1 ± 1.1 and 481.4 ± 2.3 µmol min-1 mg-1 towards p-nitrophenyl ß-N-acetylglucosaminide and N,N'-diacetyl chitobiose, respectively, a V max of 3097 ± 124 µmol min-1 mg-1 towards p-nitrophenyl ß-N-acetylglucosaminide and a K i of 14.59 mM for N-acetylglucosamine inhibition. Most metal ions and chemical reagents at final concentrations of 1.0 and 10.0 mM or 0.5 and 1.0% (v/v) had little or no effect (retaining 84.5 - 131.5% activity) on the enzyme activity. The enzyme can retain more than 53.6% activity and good stability in 3.0-20.0% (w/v) NaCl. Compared with most GlcNAcases, the activity of the enzyme is considerably higher and the tolerance to salts and N-acetylglucosamine is much better. Furthermore, the enzyme had higher proportions of aspartic acid, glutamic acid, alanine, glycine, random coils and negatively charged surfaces but lower proportions of cysteine, lysine, α-helices and positively charged surfaces than its homologs. These molecular characteristics were hypothesised as potential factors in the adaptation for salt tolerance and high activity of the GH 20 GlcNAcase. CONCLUSIONS: Biochemical characterization revealed that the GlcNAcase had novel salt-GlcNAc tolerance and high activity. These characteristics suggest that the enzyme has versatile potential in biotechnological applications, such as bioconversion of chitin waste and the processing of marine materials and saline foods. Molecular characterization provided an understanding of the molecular-function relationships for the salt tolerance and high activity of the GH 20 GlcNAcase.


Assuntos
Acetilglucosamina/química , Acetilglucosaminidase/química , Acetilglucosaminidase/ultraestrutura , Actinobacteria/enzimologia , Sais/química , Sítios de Ligação , Ativação Enzimática , Estabilidade Enzimática , Glicosídeo Hidrolases/química , Ligação Proteica , Conformação Proteica , Tolerância ao Sal , Especificidade por Substrato
20.
Sci Rep ; 6: 32081, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27553125

RESUMO

A glycoside hydrolase family 32 invertase from Bacillus sp. HJ14 was expressed in Escherichia coli. The purified recombinant enzyme (rInvHJ14) showed typical biochemical properties of low-temperature-active and alkaline enzymes: (i) rInvHJ14 was active and stable in the range of pH 7.0-9.5 with an apparent pH optimum of 8.0; (ii) rInvHJ14 was most active but not stable at 30-32.5 °C, with 19.7, 48.2 and 82.1% of its maximum activity when assayed at 0, 10 and 20 °C, respectively, and the Ea, ΔG(*) (30 °C), Km (30 °C) and kcat (30 °C) values for hydrolysis of sucrose by rInvHJ14 was 47.6 kJ mol(-1), 57.6 kJ mol(-1), 62.9 mM and 746.2 s(-1), respectively. The enzyme also showed strong sucrose tolerance. rInvHJ14 preserved approximately 50% of its highest activity in the presence of 2045.0 mM sucrose. Furthermore, potential factors for low-temperature-active and alkaline adaptations of rInvHJ14 were presumed. Compared with more thermostable homologs, rInvHJ14 has a higher frequency of glycine residues and a longer loop but a lower frequency of proline residues (especially in a loop) in the catalytic domain. The catalytic pockets of acid invertases were almost negatively charged while that of alkaline rInvHJ14 was mostly positively charged.


Assuntos
Bacillus/enzimologia , Sacarose/metabolismo , beta-Frutofuranosidase/química , beta-Frutofuranosidase/metabolismo , Bacillus/genética , Domínio Catalítico , Escherichia coli/genética , Glicina/química , Glicosilação , Concentração de Íons de Hidrogênio , Cinética , Conformação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de Proteína , Especificidade por Substrato , Temperatura , Termodinâmica , beta-Frutofuranosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...