Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(27): 34840-34849, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38946061

RESUMO

Adopting noble metals on non-noble metals is an effective strategy to balance the cost and activity of electrocatalysts. Herein, a thorough analysis of the synergistic OER is conducted at the heterogeneous interface formed by Ir clusters and NiCo2O4 based on DFT calculations. Specifically, the electrons spontaneously bring an eg occupancy of interfacial Ir close to unity after the absorbed O, providing more transferable electrons for the conversion of the absorbed O-intermediates. Besides, the diffuse distribution of electrons in the Ir 5d orbital fills the antibonding orbital after O is absorbed, avoiding the desorption difficulties caused by the stronger Ir-O bonds. The electrons transfer from Ir to Co atoms at the heterogeneous interface and fill the Co 3d band near the Fermi level, stimulating the interfacial Co to participate in the direct O-O coupling (DOOC) pathway. Experimentally, the ultrathin-modulated NiCo2O4 nanosheets are used to support Ir clusters (Ircluster-E-NiCo2O4) by the electrodeposition method. The as-synthesized Ircluster-E-NiCo2O4 catalyst achieves a current density of 10 mA cm-2 at an ultralow overpotential of 238 mV and works steadily for 100 h under a high current of 100 mA cm-2, benefiting from the efficient DOOC pathway during the OER.

2.
Adv Sci (Weinh) ; 8(12): 2100347, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34194948

RESUMO

Catalytically active metals atomically dispersed on supports presents the ultimate atom utilization efficiency and cost-effective pathway for electrocatalyst design. Optimizing the coordination nature of metal atoms represents the advanced strategy for enhancing the catalytic activity and the selectivity of single-atom catalysts (SACs). Here, we designed a transition-metal based sulfide-Ni3S2 with abundant exposed Ni vacancies created by the interaction between chloride ions and the functional groups on the surface of Ni3S2 for the anchoring of atomically dispersed Pt (PtSA-Ni3S2). The theoretical calculation reveals that unique Pt-Ni3S2 support interaction increases the d orbital electron occupation at the Fermi level and leads to a shift-down of the d -band center, which energetically enhances H2O adsorption and provides the optimum H binding sites. Introducing Pt into Ni position in Ni3S2 system can efficiently enhance electronic field distribution and construct a metallic-state feature on the Pt sites by the orbital hybridization between S-3p and Pt-5d for improved reaction kinetics. Finally, the fabricated PtSA-Ni3S2 SAC is supported by Ag nanowires network to construct a seamless conductive three-dimensional (3D) nanostructure (PtSA-Ni3S2@Ag NWs), and the developed catalyst shows an extremely great mass activity of 7.6 A mg-1 with 27-time higher than the commercial Pt/C HER catalyst.

3.
Nat Commun ; 12(1): 3783, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145269

RESUMO

Single-atom catalysts provide an effective approach to reduce the amount of precious metals meanwhile maintain their catalytic activity. However, the sluggish activity of the catalysts for alkaline water dissociation has hampered advances in highly efficient hydrogen production. Herein, we develop a single-atom platinum immobilized NiO/Ni heterostructure (PtSA-NiO/Ni) as an alkaline hydrogen evolution catalyst. It is found that Pt single atom coupled with NiO/Ni heterostructure enables the tunable binding abilities of hydroxyl ions (OH*) and hydrogen (H*), which efficiently tailors the water dissociation energy and promotes the H* conversion for accelerating alkaline hydrogen evolution reaction. A further enhancement is achieved by constructing PtSA-NiO/Ni nanosheets on Ag nanowires to form a hierarchical three-dimensional morphology. Consequently, the fabricated PtSA-NiO/Ni catalyst displays high alkaline hydrogen evolution performances with a quite high mass activity of 20.6 A mg-1 for Pt at the overpotential of 100 mV, significantly outperforming the reported catalysts.

4.
ACS Appl Mater Interfaces ; 10(42): 36128-36135, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30256082

RESUMO

In industrial manufacturing, alloying can contribute to the passivation of active metals and markedly improve their corrosion resistance. This inspires us to solve the current critical problem of Ag nanowires (Ag NWs) that have poor stability against chemical and electrochemical corrosion. These problems have seriously limited the applications of Ag NWs in optoelectronic devices where they are used for transparent conductive electrodes. Here, a kind of transparent conductive electrode based on Ag@Pt alloy-walled hollow nanowires (Ag@Pt AHNWs) is successfully fabricated by introducing 12 mol % Pt into long Ag NWs to form Ag@Pt alloy. The as-synthesized electrodes exhibit better optical transmittance (82% at the wavelength of 550 nm) under high electrical conductivity (28.73 Ω/sq-1), high thermal stability up to 400 °C for 11 h, and remarkable mechanical flexibility (remaining stable after 5000 cycles bending), as well as high resistance against chemical and electrochemical corrosion. The Ag@Pt AHNWs electrodes are further applied in a primary bifunctional polyaniline electrochemical device, and the device shows promising flexibility, noticeable multicolor performances, and high specific capacitance because of the remarkable mechanical flexibility and electrochemical stability of Ag@Pt AHNWs. This work will provide an optional approach for the preparation of other metal nanomaterial electrodes with high stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...