Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 45(10): 7974-7995, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37886947

RESUMO

The central player for chromosome segregation in both mitosis and meiosis is the macromolecular kinetochore structure, which is assembled by >100 structural and regulatory proteins on centromere DNA. Kinetochores play a crucial role in cell division by connecting chromosomal DNA and microtubule polymers. This connection helps in the proper segregation and alignment of chromosomes. Additionally, kinetochores can act as a signaling hub, regulating the start of anaphase through the spindle assembly checkpoint, and controlling the movement of chromosomes during anaphase. However, the role of various kinetochore proteins in plant meiosis has only been recently elucidated, and these proteins differ in their functionality from those found in animals. In this review, our current knowledge of the functioning of plant kinetochore proteins in meiosis will be summarized. In addition, the functional similarities and differences of core kinetochore proteins in meiosis between plants and other species are discussed, and the potential applications of manipulating certain kinetochore genes in meiosis for breeding purposes are explored.

2.
Dalton Trans ; 49(5): 1600-1612, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31942580

RESUMO

Photocatalytic adsorption desulfurization (PADS) technology has attracted enormous attention in the deep desulfurization field. Therefore, a good material with high photocatalytic activity and adsorption capacity toward organic sulfide is desirable. Herein, mesoporous ZnO/TiO2-SiO2 (ZTS) was synthesized for the first time and successfully applied in the photocatalytic desulfurization of dibenzothiophene (DBT). The composite materials were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), N2-physisorption, transmission electron microscopy (TEM), UV-Vis diffusive reflectance spectra (UV-Vis DRS), X-ray photo-electron spectroscopy (XPS), photoluminescence (PL) and electron spin resonance (ESR). The results show that the doping of TiO2 promotes the photocatalytic and adsorption abilities of the catalysts dramatically. ZTS-3 with Si/Ti = 3 exhibits the best photocatalytic desulfurization activity compared with other proportions of titanium doping. The final DBT conversion can reach 97%, and the maximum adsorption of DBT over ZTS-3 is 47 mg-S per g-cat. The photocatalytic test indicates that the remarkable photocatalytic activity of ZTS is due to the formation of a heterojunction by the interaction of ZnO and TiO2, which can successfully expand solar light absorption, improving the charge separation efficiency and inhibiting the recombination of photocatalytic electron-hole pairs. Moreover, no extra oxidants (such as O2, H2O2 or an organic oxidant) were added, which is highly beneficial for the consequent treatment of the fuel and can reduce the processing cost markedly.

3.
RSC Adv ; 8(51): 28879-28890, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-35548022

RESUMO

Porous support materials were prepared by assembling primary and secondary ZSM-5 structural units into a well-ordered mesoporous framework. The materials possessed both ZSM-5 microporous building units and mesoporous structure were used as supports for the preparation of hydrodesulfurization (HDS) catalysts. The materials and their corresponding catalysts were characterized by XRD, FTIR, 27Al MAS NMR, TEM, N2 adsorption-desorption, Py-FTIR, H2-TPR, Raman, and HRTEM techniques. The pore structures of the composite materials were modulated by adjusting the molar ratio of butanol/P123 (BuOH/P123) and then, the influences of BuOH/P123 on the catalytic performance in the HDS of dibenzothiophene (DBT) and diesel oil were systematically studied. The results showed that butanol has a big influence on the structure of the micro-mesoporous material, whereby different micro-mesoporous structures, such as the p6mm hexagonal structure or Ia3̄d cubic structure, were formed with different butanol addition amounts. The composite ZK-3 (BuOH/P123 = 100) possessed the best surface area and pore structure. Therefore, the NiMo/ZK-3 catalyst showed the highest catalytic activity in the HDS of DBT with a BP selectivity of 72.1% due to its excellent textural property, moderate MSI, relatively high B/L ratios, and highly dispersed NiMoS active phases. Moreover, the NiMo/AZK-3 catalyst exhibited excellent catalytic performance in the HDS of diesel oil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...