Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Sci ; 155(4): 121-130, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880546

RESUMO

The atrophic myocardium resulting from mechanical unloading and nutritional deprivation is considered crucial as maladaptive remodeling directly associated with heart failure, as well as interstitial fibrosis. Conversely, myocardial hypertrophy resulting from hemodynamic loading is perceived as compensatory stress adaptation. We previously reported the abundant presence of highly redox-active polysulfide molecules, termed supersulfide, with two or more sulfur atoms catenated in normal hearts, and the supersulfide catabolism in pathologic hearts after myocardial infarction correlated with worsened prognosis of heart failure. However, the impact of supersulfide on myocardial remodeling remains unclear. Here, we investigated the involvement of supersulfide metabolism in cardiomyocyte remodeling, using a model of adenosine 5'-triphosphate (ATP) receptor-stimulated atrophy and endothelin-1 receptor-stimulated hypertrophy in neonatal rat cardiomyocytes. Results revealed contrasting changes in intracellular supersulfide and its catabolite, hydrogen sulfide (H2S), between cardiomyocyte atrophy and hypertrophy. Stimulation of cardiomyocytes with ATP decreased supersulfide activity, while H2S accumulation itself did not affect cardiomyocyte atrophy. This supersulfide catabolism was also involved in myofibroblast formation of neonatal rat cardiac fibroblasts. Thus, unraveling supersulfide metabolism during myocardial remodeling may lead to the development of novel therapeutic strategies to improve heart failure.


Assuntos
Sulfeto de Hidrogênio , Miócitos Cardíacos , Sulfetos , Remodelação Ventricular , Animais , Miócitos Cardíacos/metabolismo , Sulfetos/metabolismo , Sulfetos/farmacologia , Sulfeto de Hidrogênio/metabolismo , Células Cultivadas , Trifosfato de Adenosina/metabolismo , Ratos , Atrofia , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Animais Recém-Nascidos , Ratos Sprague-Dawley
2.
J Pharmacol Sci ; 155(3): 75-83, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797536

RESUMO

Sulfur-based redox signaling has long attracted attention as critical mechanisms underlying the development of cardiac diseases and resultant heart failure. Especially, post-translational modifications of cysteine (Cys) thiols in proteins mediate oxidative stress-dependent cardiac remodeling including myocardial hypertrophy, senescence, and interstitial fibrosis. However, we recently revealed the existence of Cys persulfides and Cys polysulfides in cells and tissues, which show higher redox activities than Cys and substantially contribute to redox signaling and energy metabolism. We have established simple evaluation methods that can detect polysulfides in proteins and inorganic polysulfides in cells and revealed that polysulfides abundantly expressed in normal hearts are dramatically catabolized by exposure to ischemic/hypoxic and environmental electrophilic stress, which causes vulnerability of the heart to mechanical load. Accumulation of hydrogen sulfide, a nucleophilic catabolite of persulfides/polysulfides, may lead to reductive stress in ischemic hearts, and perturbation of polysulfide catabolism can improve chronic heart failure after myocardial infarction in mice. This review focuses on the (patho)physiological role of sulfur metabolism in hearts, and proposes that sulfur catabolism during ischemic/hypoxic stress has great potential as a new therapeutic strategy for the treatment of ischemic heart failure.


Assuntos
Cisteína , Insuficiência Cardíaca , Sulfeto de Hidrogênio , Oxirredução , Sulfetos , Enxofre , Insuficiência Cardíaca/metabolismo , Animais , Humanos , Sulfetos/metabolismo , Enxofre/metabolismo , Sulfeto de Hidrogênio/metabolismo , Cisteína/metabolismo , Estresse Oxidativo , Transdução de Sinais , Processamento de Proteína Pós-Traducional , Camundongos , Terapia de Alvo Molecular , Metabolismo Energético , Miocárdio/metabolismo
3.
J Pharmacol Sci ; 154(2): 127-135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246726

RESUMO

Smoking is one of the most serious risk factors for cardiovascular diseases. Although cigarette mainstream and sidestream smoke are significant contributors to increased cardiovascular mortality and morbidity, the underlying mechanism is still unclear. Here, we report that exposure of rat neonatal cardiomyocytes to cigarette smoke extract (CSE) induces mitochondrial hyperfission-mediated myocardial senescence. CSE leads to mitochondrial fission and reactive oxygen species (ROS) production through the complex formation between mitochondrial fission factor Drp1 and actin-binding protein, filamin A. Pharmacological perturbation of interaction between Drp1 and filamin A by cilnidipine and gene knockdown of Drp1 or filamin A inhibited CSE-induced mitochondrial hyperfission and ROS production as well as myocardial senescence. We previously reported that Drp1 activity is controlled by supersulfide-induced Cys644 polysulfidation. The redox-sensitive Cys644 was critical for CSE-mediated interaction with filamin A. The administration of supersulfide donor, Na2S3 also improved mitochondrial hyperfission-mediated myocardial senescence induced by CSE. Our results suggest the important role of Drp1-filamin A complex formation on cigarette smoke-mediated cardiac risk and the contribution of supersulfide to mitochondrial fission-associated myocardial senescence.


Assuntos
Fumar Cigarros , Miócitos Cardíacos , Animais , Ratos , Filaminas , Mitocôndrias , Espécies Reativas de Oxigênio
4.
AAPS PharmSciTech ; 20(3): 102, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30723877

RESUMO

The purpose of this work is to investigate the effects of polymer/surfactant as carriers on the solubility and dissolution of fenofibrate solid dispersions (FF SDs) with the aid of systematic research on the physicochemical properties of the polymer/surfactant system and further highlight the importance of studying polymer/surfactant interaction in the preformulation. The critical micelle concentration (CMC) of sodium lauryl sulfate (SLS) and critical aggregation concentration (CAC) of polymer/SLS solutions were obtained through conductivity measurement. Meanwhile, surface tension, viscosity, morphology, and wettability of polymer/SLS with different weight ratios of SLS were analyzed to screen out the suitable content of SLS (weight%, 5% in carriers) incorporated in SDs. Polymer/SLS coprecipitate and FF SDs were prepared by the solvent evaporation method. The results from differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis showed that FF was molecularly dispersed in SDs. Compared to the solubility of FF in povidone/SLS (PVP/SLS) solutions, the increment of FF solubility in copovidone/SLS (VA64/SLS) solutions was due to the formation of free SLS micelles, which have been confirmed by transmission electron microscopy (TEM). Particularly, the wettability of FF SDs and physical mixtures (PMs) was also determined by the sessile drop technique. A linear relationship between the wettability of carriers and that of FF SDs was found, which revealed the significant role of carriers on the surface composition of FF SDs. As the molecular weight of PVP increased, the wettability of carriers decreased, thus leading to the reduction of the dissolution rate of SDs. Although the presence of SLS did not enhance the dissolution of FF SDs, it increased the amount of drug released at the initial stage. All these results indicated that the polymer/SLS interaction would affect the performance of SDs; hence, it was necessary to study their properties in the preformulation.


Assuntos
Portadores de Fármacos/química , Fenofibrato/química , Hipolipemiantes/química , Polímeros/química , Tensoativos/química , Cristalografia por Raios X/métodos , Relação Dose-Resposta a Droga , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Fenofibrato/administração & dosagem , Fenofibrato/farmacocinética , Hipolipemiantes/administração & dosagem , Hipolipemiantes/farmacocinética , Polímeros/administração & dosagem , Polímeros/farmacocinética , Solubilidade , Tensão Superficial/efeitos dos fármacos , Tensoativos/administração & dosagem , Tensoativos/farmacocinética , Molhabilidade/efeitos dos fármacos , Difração de Raios X/métodos
5.
AAPS PharmSciTech ; 19(5): 2288-2300, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29845502

RESUMO

Solvents, accounting the majority of the organogel system, have a tremendous impact on the characteristics of gels. To date, there is a large variety of organogel systems; relatively few have been investigated in the field of structure-solvent correlation. Here, a series of solvent parameters were applied to explore the role of solvent effect on network forming and gel property, intending to build the connection between the precise solvent parameter and gel property. Among the solvent parameters, Kamlet-Taft Parameters and Hansen solubility parameters can distinguish specific types of intermolecular interactions, which could correlate solvent parameter with the gel property. From an analysis of the morphologies obtained from POM and SEM, the gelator structure has an impact on its self-assembly. For possible conformations, the gelators were investigated through XRD. The investigation of solvent-property relationship will provide a theoretical basis for controllable drug delivery implants.


Assuntos
Géis/química , Géis/metabolismo , Solventes/química , Solventes/metabolismo , Previsões , Ligação de Hidrogênio , Conformação Molecular , Solubilidade , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...