Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35808220

RESUMO

Systems-in-foil with multi-sensor arrays require extensive wiring with large numbers of data lines. This prevents scalability of the arrays and thus limits the applications. To enable multiplexing and thus reducing the external connections down to few digital data links and a power supply, active circuits in the form of ASICs must be integrated into the foils. However, this requires reliable multilayer wiring of the sensors and contacts for chip integration. As an elegant solution to this, a new manufacturing process for multilayer wiring in polyimide-based sensor foils has been developed that also allows ASIC chips to be soldered. The electrical four-level micro-via connections and the contact pads are generated by galvanic copper deposition after all other process steps, including stacking and curing of polyimide layers, are completed. Compared to layer by layer via technology, the processing time is considerably reduced. Because copper plating of vias and solderable copper contact pads happens as the final step, the risk of copper oxidation during polyimide curing is completely eliminated. The entire fabrication process is demonstrated for six strain sensor nodes connected to a surface-mounted ASIC as a detecting unit for sensing spatially resolved bending states. Each sensor node is a full-bridge configuration consisting of four strain gauges distributed across interconnected layers. The sensor foil allows bending of +/-120° without damage. This technology can be used in future for all kinds of complex flexible systems-in-foil, in particular for large arrays of sensors.

2.
Opt Express ; 28(21): 30586-30596, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115056

RESUMO

Laser streaming is a phenomenon in which liquid streaming is driven directly from the laser through an in situ fabricated nanostructure. In this study, liquid streaming of a gold nanoparticle suspension driven by a pulsed laser was studied using a high-speed camera. The laser streaming formation time, streaming velocity, and relative energy conversion efficiency of laser streaming was measured for different nanoparticle concentrations, focal lens position, laser powers, and laser repetition rates. In addition to the laser intensity, which played a significant role in the formation process of laser streaming, the optical gradient force was found to be an important approach involved in the transport and provision of nanoparticles during the formation of laser streaming. This finding facilitated a better understanding of the formation mechanism of laser streaming and demonstrated the possibilities of a new potential laser etching technique based on nanosecond lasers and nanoparticle suspensions. This result can also expand the application of laser streaming in microfluids and other fields that require lasers to move macroscopic objects at relatively high speeds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...