Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2404046, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842820

RESUMO

Cobalt carbide (Co2C) possesses high catalytic efficiency Fischer-Tropsch synthesis (FTS), while the products selectivity appears sensitive to crystallography geometry. Since the Anderson-Schulz-Flory (ASF) distribution in FTS is broken through fabricating facetted Co2C nanocrystals, yet the underlying mechanism of Co2C crystallization remains unclarified suffering from sophisticated catalyst composition involving promoter agents. Herein, the synthesis of high-purity single-crystal nanoprisms (Co2C-p) for highly efficient FTS is reported to lower olefins. Through comprehensive microstructure analysis, e.g., high-resolution TEM, in situ TEM and electron diffraction, as well as finite element simulation of gas flow field, for the first time the full roadmap of forming catalytic active cobalt carbides is disclosed, starting from reduction of Co3O4 precursor to CoO intermediate, then carburization into Co2C-s and subsequent ripening growth into Co2C-p. This gas-induced engineering of crystal phase provides a new synthesis strategy, with many new possibilities for precise design of metal-based catalyst for diverse catalytic applications.

2.
Sleep Med X ; 6: 100094, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38149178

RESUMO

Background: Insomnia is a common disease, and the application of various types of sleeping pills for cognitive impairment is controversial, especially as different doses can lead to different effects. Therefore, it is necessary to evaluate the cognitive impairment caused by different sleeping pills to provide a theoretical basis for guiding clinicians in the selection of medication regimens. Objective: To evaluate whether various different doses (low, medium and high) of anti-insomnia drugs, such as the dual-orexin receptor antagonist (DORA), zopiclone, eszopiclone and zolpidem, induce cognitive impairment. Methods: The PubMed, Embase, Scopus, Cochrane Library, and Google Scholar databases were searched from inception to September 20th, 2022 for keywords in randomized controlled trials (RCTs) to evaluate the therapeutic effects of DORA, eszopiclone, zopiclone and zolpidem on sleep and cognitive function. The primary outcomes were indicators related to cognitive characteristics, including scores on the Digit Symbol Substitution Test (DSST) and daytime alertness. The secondary outcomes were the indicators associated with sleep and adverse events. Continuous variables were expressed as the standard mean difference (SMD). Data were obtained through GetData 2.26 and analyzed by Stata v.15.0. Results: A total of 8702 subjects were included in 29 studies. Eszopiclonehigh significantly increased the daytime alertness score (SMD = 3.00, 95 % CI: 1.86 to 4.13) compared with the placebo, and eszopiclonehigh significantly increased the daytime alertness score (SMD = 4.21, 95 % CI: 1.65 to 6.77; SMD = 3.95, 95 % CI: 1.38 to 6.51; SMD = 3.26, 95 % CI: 0.38 to 6.15; and SMD = 3.23, 95 % CI: 0.34 to 6.11) compared with zolpidemlow, zolpidemhigh, DORAlow, and eszopiclonemid, respectively. Compared with the placebo, zopiclone, zolpidemmid, and eszopiclonehigh, DORA significantly increased the TST (SMD = 2.39, 95 % CI: 1.11 to 3.67; SMD = 6.00, 95 % CI: 2.73 to 9.27; SMD = 1.89, 95 % CI: 0.90 to 2.88; and SMD = 1.70, 95 % CI: 0.42 to 2.99, respectively). Conclusion: We recommend DORA as the best intervention for insomnia because it was highly effective in inducing and maintaining sleep without impairing cognition. Although zolpidem had a more pronounced effect on sleep maintenance, this drug is better for short-term use. Eszopiclone and zopiclone improved sleep, but their cognitive effects have yet to be verified.

3.
Int J Biol Macromol ; 250: 126202, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37573916

RESUMO

The formation of three dimensional network structure is critical in determining mechanical properties of natural rubber (NR). Consequently, it is vital to regulate crosslinking network of NR by controlling vulcanization process. Inspired by our previous studies on contribution of non-rubber components (NRCs) to the excellent properties of NR, we find octylamine in NRCs decreases the activation energy (Ea) of vulcanization from 82.73 kJ/mol to 44.34 kJ/mol, thereby reducing vulcanization time from 18.67 min to 2.71 min. From microscopic perspective, octylamine tends to coordinate with zinc ions to improve dispersion of ZnO in NR. And octylamine promotes ring-opening reaction of S8 to favor formation of polysulfide intermediates. Therefore, the incorporation of octylamine remarkably improves vulcanization efficiency, which contributes to the formation of a more homogeneous network with higher crosslinking density, enhancing remarkably the strength and toughness of NR. As a result, the tensile strength and fracture energy of samples are as high as 31.15 MPa and 68.88 kJ/m2, respectively. In addition, even with a 60 % reduction in ZnO content, the NR samples still maintain high vulcanization efficiency and excellent mechanical properties after the addition of octylamine, which provides a green and feasible way to alleviate the environmental pollution caused by ZnO.

4.
Peptides ; 167: 171044, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37330110

RESUMO

OBJECTIVE: To explore the effects of different doses of almorexant (an dual orexin receptor antagonist) on learning and memory in Alzheimer's disease (AD) mice. METHODS: Forty-four APP/PS1 (model of Alzheimer's disease; AD) mice were randomly divided into 4 groups: the control group (CON) and those that received 10 mg/kg almorexant (low dose; LOW), 30 mg/kg almorexant (medium dose; MED) and 60 mg/kg almorexant (high dose; HIGH). During the 28-day intervention period, mice received an intraperitoneal injection at the beginning of the light period (6:00 am). The effects of different doses of almorexant on learning and memory and 24-hour sleep-wake behaviour were assessed by immunohistochemical staining. The above continuous variables are expressed as the mean ± standard deviation (SD), and then univariate regression analysis and generalized estimating equations were performed to compare the groups; these results are expressed as the mean difference (MD) and 95% confidence interval (CI). The statistical software used STATA 17.0 MP. RESULTS: Forty-one mice completed the experiment (3 died: 2 mice in the HIGH group and 1 mouse in the CON group). Compared with the CON group, the LOW group (MD=6803 s, 95% CI: 4470 to 9137 s), MED group (MD=14,473 s, 95% CI: 12,140-16,806 s) and the HIGH group (MD=24,505 s, 95% CI: 22,052-26,959 s) had significantly longer sleep durations. The Y maze results showed that LOW group (MD=0.14,95%CI: 0.078-0.20) and MED group (MD=0.14,95%CI = 0.074-0.20) mice compared to the CON group, and the low-medium dose of Almorexant did not damage the short-term learning and memory performance of APP / PS1 (AD) mice.Compared with the CON, LOW, and MED groups, the HIGH group exhibited a significant decrease in the Aß plaque-positive area in the cortex (MD= -0.030, 95% CI: -0.035 to -0.025; MD=-0.049, 95% CI: -0.054 to -0.044; and MD=-0.07, 95% CI: -0.076 to -0.066, respectively). CONCLUSION: The moderate dose of almorexant (30 mg/kg) prolonged the sleep duration of APP/PS1 (AD) mice to a greater extent than the low dose (10 mg/kg) without altering learning and memory. The MED mice showed a good sleep response and a small residual effect on the next day. High-dose (60 mg / kg) almorexant impaired behavioral learning and memory performance in mice.Compared to the CON group and the LOW group, the MED group exhibited improved working memory. Thus, treatment with almorexant may reduce ß-amyloid deposition in AD, slowing neurodegeneration. Additional studies are needed to determine the mechanism of action.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Camundongos Transgênicos , Acetamidas/farmacologia , Acetamidas/uso terapêutico , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/farmacologia , Modelos Animais de Doenças , Aprendizagem em Labirinto , Hipocampo/metabolismo
5.
ACS Nano ; 17(11): 10677-10688, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37253163

RESUMO

Nanoparticle (NP) exsolution from perovskite-based oxides matrix upon reduction has emerged as an ideal platform for designing highly active catalysts for energy and environmental applications. However, the mechanism of how the material characteristics impacts the activity is still ambiguous. In this work, taking Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3 thin film as the model system, we demonstrate the critical impact of the exsolution process on the local surface electronic structure. Combining advanced microscopic and spectroscopic techniques, particularly scanning tunneling microscopy/spectroscopy and synchrotron-based near ambient X-ray photoelectron spectroscopy, we find that the band gaps of both the oxide matrix and exsolved NP decrease during exsolution. Such changes are attributed to the defect state within the forbidden band introduced by oxygen vacancies and the charge transfer across the NP/matrix interface. Both the electronic activations of oxide matrix and the exsolved NP phase lead to good electrocatalytic activity toward the fuel oxidation reaction at elevated temperature.

6.
Nat Commun ; 13(1): 3777, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773257

RESUMO

The redox center of transition metal oxides and hydroxides is generally considered to be the metal site. Interestingly, proton and oxygen in the lattice recently are found to be actively involved in the catalytic reactions, and critically determine the reactivity. Herein, taking glycerol electrooxidation reaction as the model reaction, we reveal systematically the impact of proton and oxygen anion (de)intercalation processes on the elementary steps. Combining density functional theory calculations and advanced spectroscopy techniques, we find that doping Co into Ni-hydroxide promotes the deintercalation of proton and oxygen anion from the catalyst surface. The oxygen vacancies formed in NiCo hydroxide during glycerol electrooxidation reaction increase d-band filling on Co sites, facilitating the charge transfer from catalyst surface to cleaved molecules during the 2nd C-C bond cleavage. Consequently, NiCo hydroxide exhibits enhanced glycerol electrooxidation activity, with a current density of 100 mA/cm2 at 1.35 V and a formate selectivity of 94.3%.


Assuntos
Oxigênio , Prótons , Biomassa , Glicerol , Hidróxidos/química , Oxigênio/química
7.
Phytochemistry ; 199: 113167, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35378107

RESUMO

In the present study, purine alkaloid analysis and transcriptome of Camellia gymnogyna Hung T. Chang (Theaceae) from Dayao Mountain were performed by high-performance liquid chromatography (HPLC) and RNA-Seq, respectively. The results showed that the major purine alkaloids accumulated in Camellia gymnogyna Hung T. Chang (Theaceae) were theobromine together with a small amount of theacrine and caffeine. Through polymerase chain reaction (PCR), three types of cDNA encoding N-methyltransferases were isolated from the leaves of Camellia gymnogyna Hung T. Chang (Theaceae) and designated GCS1, GCS2, and GCS3. We subsequently expressed GCS1, GCS2, and GCS3 in Escherichia coli and incubated lysates of the bacterial cells with a variety of xanthine substrates in the presence of S-adenosyl-L-methionine as the methyl donor. We found that the recombinant GCS1 proteins catalyzed 1,3,7-trimethyluric acid to produce theacrine, the recombinant GCS3 proteins catalyzed 7-methylxanthine to produce theobromine, while the recombinant GCS2 proteins did not catalyze any xanthine derivatives. Simultaneous analysis of the expressions of GCS1, GCS2, GCS3, and a caffeine synthase gene (TCS1) in Camellia gymnogyna Hung T. Chang (Theaceae) and other tea plants provided a reference for further research on the functions of these genes.


Assuntos
Alcaloides , Camellia , Theaceae , Alcaloides/química , Vias Biossintéticas , Camellia/química , Camellia/genética , Metiltransferases/metabolismo , Purinas/metabolismo , Theaceae/metabolismo , Teobromina/metabolismo , Xantinas/metabolismo
8.
Foods ; 11(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35267260

RESUMO

Tea (Camelliasinensis var. sinensis) is a widely consumed caffeine-containing beverage, however the Camellia genus also includes other species, which are consumed as tea in their local growing regions. Presently, HPLC analysis assessed 126 unique Camellia germplasms belonging to three Camellia species, C. sinensis var. pubilimba Chang (Csp), C. gymnogyna Chang (CgC) and C. crassicolumna Chang (CcC). Theobromine was the predominant purine alkaloid in all species, representing over 90% of purine alkaloids in Csp and CgC, and 50% in CcC. Significant variability existed in purine alkaloid patterns both between and within species, and some germplasms possessed highly unique alkaloid profiles. Sensory evaluation and quality composition analysis of green tea products produced from the three Camellia species suggested their unsuitability for use in tea production due to their unpalatable flavor. The results of this study revealed the differences in purine alkaloids and main quality components between Camellia species and tea, which contributed to understand why tea, rather than other Camellia species, has become a popular beverage in the world after long-term artificial selection. In addition, unique alkaloid profiles suggest usefulness of these germplasm resources in future breeding of decaffeinated tea plant varieties and alkaloid metabolism research.

9.
Front Med (Lausanne) ; 9: 984227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36816725

RESUMO

Orexin is a neuropeptide produced by the lateral hypothalamus that plays an important role in regulating the sleep-wake cycle. The overexpression of the orexinergic system may be related to the pathology of sleep/wakefulness disorders in Alzheimer's disease (AD). In AD patients, the increase in cerebrospinal fluid orexin levels is associated with parallel sleep deterioration. Dual orexin receptor antagonist (DORA) can not only treat the sleep-wakefulness disorder of AD but also improve the performance of patients with cognitive behavior disorder. It is critical to clarify the role of the orexin system in AD, study its relationship with cognitive decline in AD, and evaluate the safety and efficacy of DORA.

10.
Front Hum Neurosci ; 16: 1029554, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699960

RESUMO

Background: About one-third of adults have trouble sleeping, ranging from occasional difficulty to chronic insomnia, along with difficulty maintaining sleep. Many studies reported that the long-term use of hypnotics can cause brain dysfunction and damage cognition. Objective: The objective of the study is to evaluate whether low, medium, and high doses of orexin dual receptor antagonists (DORA), zopiclone (ZOP), eszopiclone (ESZ), and zolpidem (ZST) can impair cognition. Methods: From the beginning through September 20, 2022, PubMed, Embase, Scopus, the Cochrane Library, and Google Scholar were searched. Randomized controlled trials (RCTs) assessing the therapeutic effects of DORA, eszopiclone, and zopiclone for sleep and cognitive function were included. The primary outcomes were indices related to the cognitive profile, including memory, alertness, execution and control function, and attention and orientation. The secondary outcomes were indices related to sleep and adverse events. The standard mean difference (SMD) was generated for continuous variables. Certain data were captured from figures by GetData 2.26 and analyzed using RStudio 4.2. Results: Finally, a total of 8,702 subjects were included in 29 studies. Compared with the placebo, the DSST (Digit Symbol Substitution Test) scores of low, medium, and high doses of DORA were SMD = 0.77; 95% CI: 0.33-1.20; SMD = 1.58; 95% CI: 1.11-2.05; and SMD = 0.85; 95% CI: 0.33-1.36, respectively. The DSST scores of zolpidem at low, medium, and high doses were SMD = -0.39; 95% CI: 0.85-0.07; SMD = -0.88, 95% CI: -2.34-0.58; and SMD = -0.12, 95% CI: -0.85-0.60, respectively. Zopiclone's DSST scale score was SMD = -0.18; 95% CI: -0.54-0.18. In addition, the total sleep time (TST) of low, medium, and high doses of DORA was SMD = 0.28, 95% CI: -0.15-0.70; SMD = 1.36, 95% CI: 0.87-1.86; and SMD = 2.59, 95% CI: 1.89-3.30, respectively. The TST of zolpidem with low, medium, and high doses was SMD = 1.01, 95% CI: 0.18-1.83; SMD = 1.94, 95% CI: 0.46-3.43; and SMD = 1.71, 95% CI: 0.86-2.56, respectively. The TST of low, medium, and high doses of eszopiclone was relatively SMD = 2.03, 95% CI: -0.21-4.27; SMD = 2.38, 95% CI: 1.35-3.42; and SMD = 1.71, 95% CI: 0.60-2.82. Zopiclone's TST was SMD = 2.47, 95% CI: 1.36-3.58. Conclusion: We recommend DORA as the best intervention for insomnia because it is highly effective in inducing and maintaining sleep without impairing cognition. Although zolpidem has a more pronounced effect on maintaining sleep, it is best to reduce its use because of its side effects. Eszopiclone and zopiclone improved sleep quality, but their safety in cognition remains to be verified.

11.
Small ; 17(45): e2104144, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34605170

RESUMO

Perovskite-based oxides attract great attention as catalysts for energy and environmental devices. Nanostructure engineering is demonstrated as an effective approach for improving the catalytic activity of the materials. The mechanism for the enhancement, nevertheless, is still not fully understood. In this study, it is demonstrated that compressive strain can be introduced into freestanding perovskite cobaltite La0.8 Sr0.2 CoO3- δ (LSC) nanofibers with sufficient small size. Crystal structure analysis suggests that the LSC fiber is characterized by compressive strain along the ab plane and less distorted CoO6 octahedron compared to the bulk powder sample. Accompanied by such structural changes, the nanofiber shows significantly higher oxygen reduction reaction (ORR) activity and better stability at elevated temperature, which is attributed to the higher oxygen vacancy concentration and suppressed Sr segregation in the LSC nanofibers. First-principle calculations further suggest that the compressive strain in LSC nanofibers effectively shortens the distance between the Co 3d and O 2p band center and lowers the oxygen vacancy formation energy. The results clarify the critical role of surface stress in determining the intrinsic activity of perovskite oxide nanomaterials. The results of this work can help guide the design of highly active and durable perovskite catalysts via nanostructure engineering.

12.
Adv Sci (Weinh) ; 8(22): e2102713, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34658158

RESUMO

Doping perovskite oxide with different cations is used to improve its electro-catalytic performance for various energy and environment devices. In this work, an activated lattice oxygen activity in Pr0.4 Sr0.6 Cox Fe0.9- x Nb0.1 O3- δ (PSCxFN, x = 0, 0.2, 0.7) thin film model system by B-site cation doping is reported. As Co doping level increases, PSCxFN thin films exhibit higher concentration of oxygen vacancies ( V o • • ) as revealed by X-ray diffraction and synchrotron-based X-ray photoelectron spectroscopy. Density functional theory calculation results suggest that Co doping leads to more distortion in FeO octahedra and weaker metaloxygen bonds caused by the increase of antibonding state, thereby lowering V o • • formation energy. As a consequence, PSCxFN thin film with higher Co-doping level presents larger amount of exsolved particles on the surface. Both the facilitated V o • • formation and B-site cation exsolution lead to the enhanced hydrogen oxidation reaction (HOR) activity. Excessive Co doping until 70%, nevertheless, results in partial decomposition of thin film and degrades the stability. Pr0.4 Sr0.6 (Co0.2 Fe0.7 Nb0.1 )O3 with moderate Co doping level displays both good HOR activity and stability. This work clarifies the critical role of B-site cation doping in determining the V o • • formation process, the surface activity, and structure stability of perovskite oxides.

13.
J Agric Food Chem ; 68(52): 15359-15372, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33206517

RESUMO

Caffeine (Cf) is one of the important components of plant-derived drinks, such as tea, coffee, and cola. It can protect soft tissues from being infected by pathogens and is also medically beneficial for human health. In this review, we first introduced the Cf biosynthesis pathways in plants and the related N-methyltransferases (NMTs), with a focus on the current research status of the substrate specificity, structural basis for substrate recognition, and catalytic mechanism in members of the caffeine synthase gene family. In addition, we addressed the expression characteristics and potential regulatory mechanisms of NMTs and also projected the future research directions. The goal was to summarize the Cf biosynthetic pathway and related NMTs in plants and to provide the molecular basis for regulating the caffeine biosynthesis, so as to effectively guide future tea and coffee breeding.


Assuntos
Cafeína/biossíntese , Metiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Vias Biossintéticas , Coffea/enzimologia , Coffea/genética , Coffea/metabolismo , Metiltransferases/genética , Proteínas de Plantas/genética , Plantas/genética , Plantas/metabolismo
14.
Materials (Basel) ; 13(18)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942723

RESUMO

In order to study the deterioration and mechanism of dry-wet cycles and sulfate attack on the performance of concrete in seaside and saline areas, the deterioration of compressive strength of concrete with different water cement ratios under different erosion environments (sodium sulfate soaking at room temperature and coupling of dry-wet cycling and sodium sulfate) was studied here. At the same time, ICT (industrial computed tomography) and NMR (nuclear magnetic resonance) techniques were used to analyze the internal pore structure of concrete under different erosion environments. The results show that the compressive strength under different erosion environments increases first and then decreases, and the dry-wet cycle accelerates the sulfate erosion. With the increase of dry and wet cycles, larger pores are filled with erosion products and developed into small pores in the early stage of erosion; in the later stage of erosion, the proportion of larger pores increases, and cracks occur inside the sample. In the process of sulfate soaking and erosion, the smaller pores in the concrete account for the majority. As the sulfate erosion continues, the T2 spectrum distribution curve gradually moves right, and the signal intensity of the larger pores increases.

15.
Sci Prog ; 103(1): 36850419874234, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31829851

RESUMO

Composite bolted joints are quite necessary for composite structures connection, which has become the main limit for the use of composites in main load-bearing structures. In this article, a fatigue model of composite bolted joint based on equivalent stress is established by programming in ABAQUS USDFLD subroutine to simulate the progressive failure of composite bolted joints. By introducing three-dimensional Tsai-Hill static failure criterion, equivalent stress is calculated for investigating effects of multiaxial stress on fatigue life. In the subroutine of progressive failure for fatigue model, fatigue life of composite bolted joint and damage state of elements that are meshed in the process of modelling are connected by defining field variable. Different fatigue modes are predicted here by changing stress amplitude and ratio loading, in which simulation results agree well with that obtained in corresponding experiments.


Assuntos
Fadiga , Simulação por Computador , Humanos , Suporte de Carga
16.
Materials (Basel) ; 12(21)2019 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-31684149

RESUMO

The objective of this manuscript is to study the effects of nano-particle addition on the durability and internal deterioration of concrete subject to freezing and thawing cycles (FTCs). Fifteen nm of SiO2, 30 nm of SiO2, and 30 nm of TiO2 were added to concrete to prepare specimens with different contents. All the specimens were subjected to FTCs from 0 to 75. The mass of each specimen was measured once the FTCs reached 25, 50, and 75. Then the freezing and thawing resistance of the concrete was evaluated by computing the mass loss ratio. The pore fluid size distribution of the concrete was detected using nuclear magnetic resonance (NMR). The deterioration of the concrete subjected to FTCs was detected by industrial computed tomography (CT). The effect of different nano-particle sizes, different contents of nano-particles, and different types of nano-particles on the freezing and thawing resistance, the pore size, distribution, and the deterioration of the concrete were analyzed. The effects of FTCs on the pore size distribution and the internal deterioration of concrete were also studied. Compared to 30 nm-Nono-SiO2 (NS), 15 nm-NS had a better effect in improving the internal structure for concrete, and 30 nm-Nano-TiO2 (NT) also had a better effect in preventing pore and crack expansion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...