Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Zool A Ecol Integr Physiol ; 335(3): 367-380, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33651924

RESUMO

Serotonin (5-hydroxytryptamine [5-HT]) receptors (5-HTRs) mediate neuroendocrine signaling via interactions with the ligand serotonin (5-HT). The 5-HT signaling system has been well studied in vertebrates, but rarely known in invertebrate animals, especially in the marine invertebrates. In this study, we identified and characterized a novel 5-HTR from the sea cucumber Apostichopus japonicus (Aj5-HT4/6 ). The cloned Aj5-HT4/6 open reading frame comprised 1290 bp and encoded 429 amino acids. Bioinformatic analysis of the receptor indicated that it was a member of the class A of the G protein-coupled receptor family. Further experiments using Aj5-HT4/6 -transfected HEK293 cells demonstrated that treatment with 5-HT could induce rapid internalization of Aj5-HT4/6 fused with enhanced green fluorescent protein from the cell surface into the cytoplasm and triggered a significant increase in levels of the second messenger cAMP as well as mitogen-activated protein kinase phosphorylation in a 5-HT dose-dependent manner. Quantitative real time-polymerase chain reaction demonstrated that Aj5-HT4/6 was predominantly expressed in the muscle and respiratory tree, and its expression was significantly decreased during estivation. Taken together, these results imply that Aj5-HT4/6 is potentially involved in the movement and metabolism of the sea cucumber.


Assuntos
Receptores de Serotonina/metabolismo , Pepinos-do-Mar/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Regulação da Expressão Gênica , Células HEK293 , Humanos , Modelos Moleculares , Filogenia , Conformação Proteica , Transporte Proteico , Receptores de Serotonina/química , Receptores de Serotonina/genética , Pepinos-do-Mar/química
2.
FASEB J ; 33(9): 9731-9741, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31162939

RESUMO

Elevenin is a newly discovered novel neuropeptide. Knockdown of either elevenin or orphan receptor NlA42 transcript expression by RNA interference caused severe cuticle melanization in the brown planthopper (BPH). Injection of a synthetic elevenin peptide not only rescued the body color phenotype in dselevenin-pretreated individuals but also suppressed melanization of black insects grown in natural conditions. Real-time quantitative PCR results revealed that elevenin expression levels were highest in the brain and salivary gland. Immunohistochemistry analysis confirmed that a precursor peptide of elevenin was generated in the salivary gland, suggesting that the salivary gland might be an important neurosecretory tissue in addition to the brain in BPH. Furthermore, double-strand RNA-mediated silencing of elevenin and NlA42 resulted in down-regulation of arylalkylamine-N-acetyltransferase and up-regulation of tyrosine hydroxylase, whereas elevenin peptide injection resulted in up-regulation of N-ß-alanyldopamine synthase and aspartate 1-decarboxylase, indicating a complex regulation network for cuticle pigmentation. In addition, functional characterization demonstrated that NlA42 is a cognate receptor for elevenin, and couples to Gq and Gs proteins, triggering both PLC/Ca2+/PKC and AC/cAMP/PKA signaling pathways in response to elevenin treatment. These findings suggest that the elevenin signaling functions control BPH body color through the tyrosine-mediated cuticle melanism pathway.-Wang, S.-L., Wang, W.-W., Ma, Q., Shen, Z.-F., Zhang, M.-Q., Zhou, N.-M., Zhang, C.-X. Elevenin signaling modulates body color through the tyrosine-mediated cuticle melanism pathway.


Assuntos
Hemípteros/metabolismo , Proteínas de Insetos/metabolismo , Neuropeptídeos/metabolismo , Pigmentação/genética , Animais , Depsipeptídeos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Hemípteros/genética , Humanos , Proteínas de Insetos/genética , Neuropeptídeos/genética , Pigmentação/fisiologia , Células Sf9 , Transdução de Sinais
3.
Open Biol ; 7(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28615473

RESUMO

Most animals are oviparous. However, the genes regulating egg shell formation remain not very clear. In this study, we found that Nilaparvata lugens Forkhead box transcription factor L2 (NlFoxL2) directly activated follicle cell protein 3C (NlFcp3C) to regulate chorion formation. NlFoxL2 and NlFcp3C had a similar expression pattern, both highly expressed in the follicular cells of female adults. Knockdown of NlFoxL2 or NlFcp3C also resulted in the same phenotypes: obesity and female infertility. RNA interference (RNAi) results suggested that NlFcp3C is a downstream gene of NlFoxL2 Furthermore, transient expression showed that NlFoxL2 could directly activate the NlFcp3C promoter. These results suggest that NlFcp3C is a direct target gene of NlFoxL2. Depletion of NlFoxL2 or NlFcp3C prevented normal chorion formation. Our results first revealed the functions of Fcp3C and FoxL2 in regulation of oocyte maturation in an oviparous animal.


Assuntos
Proteínas do Ovo/genética , Proteína Forkhead Box L2/metabolismo , Animais , Córion/citologia , Córion/crescimento & desenvolvimento , Sequência Conservada , Proteínas do Ovo/metabolismo , Feminino , Proteína Forkhead Box L2/genética , Técnicas de Silenciamento de Genes , Hemípteros/genética , Hemípteros/crescimento & desenvolvimento , Oócitos/metabolismo , Oócitos/ultraestrutura , Alinhamento de Sequência
4.
Mol Neurobiol ; 53(2): 1237-1246, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25613019

RESUMO

Valproate exposure is associated with increased risks of autism spectrum disorder. To date, the mechanistic details of disturbance of melatonin receptor subtype 1 (MTNR1A) internalization upon valproate exposure remain elusive. By expressing epitope-tagged receptors (MTNR1A-EGFP) in HEK-293 and Neuro-2a cells, we recorded the dynamic changes of MTNR1A intracellular trafficking after melatonin treatment. Using time-lapse confocal microscopy, we showed in living cells that valproic acid interfered with the internalization kinetics of MTNR1A in the presence of melatonin. This attenuating effect was associated with a decrease in the phosphorylation of PKA (Thr197) and ERK (Thr202/Tyr204). VPA treatment did not alter the whole-cell currents of cells with or without melatonin. Furthermore, fluorescence resonance energy transfer imaging data demonstrated that valproic acid reduced the melatonin-initiated association between YFP-labeled ß-arrestin 2 and CFP-labeled MTNR1A. Together, we suggest that valproic acid influences MTNR1A intracellular trafficking and signaling in a ß-arrestin 2-dependent manner.


Assuntos
Espaço Intracelular/metabolismo , Receptor MT1 de Melatonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ácido Valproico/farmacologia , beta-Arrestinas/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Endocitose/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Melatonina/farmacologia , Camundongos , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...