Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 4(7): 11346-11353, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460238

RESUMO

In this study, we systematically investigated the phase separation behaviors of polyacrylonitrile (PAN)/alkali lignin (AL)/dimethyl sulfoxide (DMSO) systems and found that the addition of AL causes phase separation and the systems form sea (PAN)/island (AL) types of structures. Interestingly, the AL-rich domains are very stable even after a long time of storage up to 15 days. Additionally, how the phase separation affected the solution rheology, the coagulation process and PAN cyclization were explored. The addition of AL in PAN/DMSO solutions changes the solution viscosity and gelation behaviors. Also, the existence of AL-rich domains accelerates the coagulation rate of the PAN solution in water. Because AL degrades at a lower temperature than PAN, it reduces the PAN cyclization temperature but leads to a higher cyclization activation energy, which could be caused by their different initiation mechanisms. These results would be useful to understand how the addition of AL affects the PAN solution structures, solution rheology, solution coagulation behaviors, and PAN stabilization reactions.

2.
Chem Commun (Camb) ; 53(25): 3595-3597, 2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28294250

RESUMO

The regeneration of cellulose from microcrystalline cellulose/DMAc·LiCl solutions through thermal induced sol-gel transition and longtime gelation resulted in the formation of wholly cellulose I with a crystallinity as high as 84.7%.


Assuntos
Acetamidas/química , Celulose/química , Cloreto de Lítio/química , Géis/química , Soluções/química , Análise Espectral Raman , Temperatura , Difração de Raios X
3.
ACS Appl Mater Interfaces ; 9(6): 5653-5659, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28097862

RESUMO

The self-stiffening under external dynamic strain has been observed for some artificial materials, especially for nanocomposites. However, few systematic studies have been carried out on their structural evolutions, and the effect of the types of nanofillers was unclear. In this study, we used a semicrystalline polymer, polyacrylonitrile (PAN), and various types of carbon nanomaterials including C60, carbon nanotube (CNT), and graphene oxide (GO). An external uniaxial dynamic strain at small amplitude of 0.2% was applied on the prepared nanocomposite films. It was observed that PAN/CNT exhibited significant self-stiffening behavior, whereas PAN/GO showed no response. Systematic characterizations were performed to determine the structural evolutions of PAN/CNT film during dynamic strain testing, and it was found that the external dynamic strain not only induced the crystallization of PAN chains but also aligned CNT along the strain direction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA