Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroreport ; 35(3): 200-207, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38305107

RESUMO

Brain injury in preterm infants is a major cause of disability and mortality in children. GSK-3ß is a common pathogenic factor for cognitive dysfunction and involves in neuronal proliferation and differentiation. However, GSK-3ß affected neuronal differentiation and its molecular pathogenesis after hypoxic-ischemic brain damage in neonatal rats remains unclear. This study investigated the effects of GSK-3ß inhibitor (TWS119) on cell cycle regulatory proteins, a neuronal differentiation factor (CEND1), maturation neurons, T-box brain transcription factor 1 (TBR1)-positive neurons to clarify the mechanisms of hypoxic-ischemic brain damage in neonatal rats. We used hypoxic-ischemic Sprague-Dawley neonatal rats with brain damage as models. These rats were used for investigating the effect of GSK-3ß on cell cycle regulatory proteins, neuronal differentiation factor (CEND1), maturation neurons, TBR1-positive neurons by western blot and immunofluorescence. Cyclin D1 (a positive cell cycle regulator) expression decreased, and p21 (a negative cell cycle regulator) expression increased in the TWS119 group compared to the hypoxia-ischemia (HI) group 7 days after HI. Additionally, compared to the HI group, TWS119 treatment up-regulated CEND1 expression and promoted neuronal differentiation and cortex development based on NeuN and TBR1 expression. Our study suggests that the GSK-3ß inhibitor TWS119 promotes neuronal differentiation after hypoxic-ischemic brain damage in neonatal rats by inhibiting cell cycle pathway.


Assuntos
Hipóxia-Isquemia Encefálica , Neurogênese , Pirimidinas , Pirróis , Animais , Ratos , Animais Recém-Nascidos , Proteínas de Ciclo Celular/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Pirróis/farmacologia , Pirróis/uso terapêutico , Ratos Sprague-Dawley , Neurogênese/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos
2.
Acta Biochim Pol ; 70(4): 905-910, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015074

RESUMO

OBJECTIVE: Necrotizing enterocolitis (NEC) is a devastating inflammatory disease with high morbidity and mortality, mainly affecting premature infants. This study aimed to explore the role of miRNA-301a in the pathogenesis of NEC. METHODS: The differentially expressed miRNAs and mRNAs were screened by collating RNA-Seq data from the GEO database of intestinal tissue samples. The differential miRNA-mRNAs regulatory network was constructed based on functional enrichment analysis. Newborn BALB/c mice were used to establish the NEC model. Haematoxylin and eosin staining was used to assess intestinal damage. The levels of IL-8 and TNF-α in mouse serum were evaluated by ELISA. qRT-PCR was used to detect the expression of miRNA-301a in intestinal tissues. RESULTS: Bioinformatics analysis showed that miRNA-301a was involved in intestinal lesions. Intestinal tissue damage was reduced and serum levels of the inflammatory cytokines IL-8 and TNF-α were lower in NEC model mice treated with miRNA-301a antagonists. The level of miRNA-301a in intestinal tissues of NEC model mice was significantly higher than in the control group and miRNA-301a antagonists treated group. CONCLUSION: miRNA-301a plays an important role in the pathogenesis of NEC by promoting inflammation, and is a potential therapeutic target of NEC.


Assuntos
Enterocolite Necrosante , MicroRNAs , Animais , Humanos , Lactente , Recém-Nascido , Camundongos , Modelos Animais de Doenças , Enterocolite Necrosante/genética , Enterocolite Necrosante/metabolismo , Inflamação/patologia , Interleucina-8/genética , MicroRNAs/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
3.
Front Optoelectron ; 15(1): 50, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36567731

RESUMO

Nanofibers have a wide range of applications in many fields such as energy generation and storage, environmental sensing and treatment, biomedical and health, thanks to their large specific surface area, excellent flexibility, and superior mechanical properties. With the expansion of application fields and the upgrade of application requirements, there is an inevitable trend of improving the performance and functions of nanofibers. Over the past few decades, numerous studies have demonstrated how nanofibers can be adapted to more complex needs through modifications of their structures, materials, and assembly. Thus, it is necessary to systematically review the field of nanofibers in which new ideas and technologies are emerging. Here we summarize the recent advanced strategies to improve the performances and expand the functions of nanofibers. We first introduce the common methods of preparing nanofibers, then summarize the advances in the field of nanofibers, especially up-to-date strategies for further enhancing their functionalities. We classify these strategies into three categories: design of nanofiber structures, tuning of nanofiber materials, and improvement of nanofibers assemblies. Finally, the optimization methods, materials, application areas, and fabrication methods are summarized, and existing challenges and future research directions are discussed. We hope this review can provide useful guidance for subsequent related work.

4.
Front Optoelectron ; 15(1): 50, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36637621

RESUMO

Nanofibers have a wide range of applications in many fields such as energy generation and storage, environmental sensing and treatment, biomedical and health, thanks to their large specific surface area, excellent flexibility, and superior mechanical properties. With the expansion of application fields and the upgrade of application requirements, there is an inevitable trend of improving the performance and functions of nanofibers. Over the past few decades, numerous studies have demonstrated how nanofibers can be adapted to more complex needs through modifications of their structures, materials, and assembly. Thus, it is necessary to systematically review the field of nanofibers in which new ideas and technologies are emerging. Here we summarize the recent advanced strategies to improve the performances and expand the functions of nanofibers. We first introduce the common methods of preparing nanofibers, then summarize the advances in the field of nanofibers, especially up-to-date strategies for further enhancing their functionalities. We classify these strategies into three categories: design of nanofiber structures, tuning of nanofiber materials, and improvement of nanofibers assemblies. Finally, the optimization methods, materials, application areas, and fabrication methods are summarized, and existing challenges and future research directions are discussed. We hope this review can provide useful guidance for subsequent related work.

5.
Comput Math Methods Med ; 2020: 9438248, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256684

RESUMO

With the continuous advancement of medical technology, the survival rate of high-risk children is increasing year by year, but the developmental problems that have gradually become apparent in the later stages have a serious impact on the quality of life of children. Amplitude-integrated EEG is an EEG monitoring technology developed for clinical use in newborns in recent years. Therefore, to better detect neuromata development in high-risk children, this study explores the validity prediction of amplitude-integrated EEG in early neuromata development in high-risk children. For 100 high-risk children, amplitude-integrated EEG was used for monitoring, and the exercise scale and validity predictors in the Bailey Infant Development Scale were used to assess whether high-risk children had neurobehavioral abnormalities. The experimental results show that the application of amplitude-integrated EEG can make accurate and effective predictions of early neuromata development outcomes in high-risk children. Compared with traditional neurological examination methods, it has higher sensitivity, specificity, positive predictive value, and consistency in predicting the early neuromata development outcomes of high-risk children. It is suitable for application and promotion in China and has a good application value.


Assuntos
Desenvolvimento Infantil/fisiologia , Eletroencefalografia/estatística & dados numéricos , Recém-Nascido/fisiologia , Biologia Computacional , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido Prematuro , Masculino , Modelos Neurológicos , Sistema Nervoso/crescimento & desenvolvimento , Fenômenos Fisiológicos do Sistema Nervoso , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Fatores de Risco , Traumatismos do Sistema Nervoso/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...