Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Acta Trop ; 257: 107283, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38955322

RESUMO

Toxoplasmosis, a zoonotic parasitic disease caused by Toxoplasma gondii (T. gondii), is prevalent worldwide. The fact should be emphasized that a considerable proportion of individuals infected with T. gondii may remain asymptomatic; nevertheless, the condition can have severe implications for pregnant women or immunocompromised individuals. The current treatment of toxoplasmosis primarily relies on medication; however, traditional anti-toxoplasmosis drugs exhibit significant limitations in terms of efficacy, side effects, and drug resistance. The life cycles of T. gondii are characterized by distinct stages and its body morphology goes through dynamic alterations during the growth cycle that are intricately governed by a wide array of post-translational modifications (PTMs). Ubiquitin (Ub) signaling and ubiquitin-like (Ubl) signaling are two crucial post-translational modification pathways within cells, regulating protein function, localization, stability, or interactions by attaching Ub or ubiquitin-like proteins (Ubls) to target proteins. While these signaling mechanisms share some functional similarities, they have distinct regulatory mechanisms and effects. T. gondii possesses both Ub and Ubls and plays a significant role in regulating the parasite's life cycle and maintaining its morphology through PTMs of substrate proteins. Investigating the role and mechanism of protein ubiquitination in T. gondii will provide valuable insights for preventing and treating toxoplasmosis. This review explores the distinctive characteristics of Ub and Ubl signaling in T. gondii, with the aim of inspiring research ideas for the identification of safer and more effective drug targets against toxoplasmosis.

2.
ACS Cent Sci ; 10(6): 1191-1200, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38947211

RESUMO

1,4-cis-Disubstituted cyclic compounds play a pivotal role in pharmaceutical development, offering enhanced potency and bioavailability. However, their stereoselective and modular synthesis remains a long-standing challenge. Here, we report an innovative strategy for accessing these structures via mild conditions employing cyclic 1,3-dienes/alkyl(aryl)halides and amines. This procedure exhibits a wide substrate scope that tolerates various functional groups. The utility of this method is demonstrated in the efficient synthesis of a TRPV6 inhibitor, CFTR modulator, and other bioactive molecules. Combined experimental and computational studies suggest that the hybrid palladium-catalyzed radical-polar crossover mechanism is crucial for achieving exceptional 1,4-syn-addition selectivity (dr > 20:1).

3.
Nucleic Acids Res ; 52(13): 7947-7960, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38842932

RESUMO

Ribosome biogenesis is a highly regulated cellular process that involves the control of numerous assembly factors. The small protein YjgA has been reported to play a role in the late stages of 50S assembly. However, the precise molecular mechanism underlying its function remains unclear. In this study, cryo-electron microscopy (cryo-EM) structures revealed that depletion of YjgA or its N-terminal loop in Escherichia coli both lead to the accumulation of immature 50S particles with structural abnormalities mainly in peptidyl transferase center (PTC) and H68/69 region. CryoDRGN analysis uncovered 8 and 6 distinct conformations of pre50S for ΔyjgA and YjgA-ΔNloop, respectively. These conformations highlighted the role of the N-terminal loop of YjgA in integrating uL16 and stabilizing H89 in PTC, which was further verified by the pull-down assays of YjgA and its mutants with uL16. Together with the function of undocking H68 through the binding of its C-terminal CTLH-like domain to the base of the L1 stalk, YjgA facilitates the maturation of PTC. This study identified critical domains of YjgA contributing to 50S assembly efficiency, providing a comprehensive understanding of the dual roles of YjgA in accelerating ribosome biogenesis and expanding our knowledge of the intricate processes governing cellular protein synthesis.


Assuntos
Microscopia Crioeletrônica , Proteínas de Escherichia coli , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Peptidil Transferases/metabolismo , Peptidil Transferases/genética , Ribossomos/metabolismo , Ribossomos/genética , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/genética , Subunidades Ribossômicas Maiores de Bactérias/química , Modelos Moleculares , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/química , Ligação Proteica
4.
J Org Chem ; 89(11): 7790-7794, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38808763

RESUMO

The incorporation of difluoromethylene groups into aza-heterocycles represents a compelling yet underexplored avenue in contemporary chemical research. In this study, we unveil a hybrid palladium-catalyzed intramolecular gem-difluoroalkylamination of conjugated dienes, providing a versatile approach to the synthesis of diverse functionalized pyrrolidines. Noteworthy features include mild reaction conditions and a remarkable tolerance toward various functional groups. Additionally, the use of alkyl iodides as electrophiles facilitates the generation of the corresponding alkylamination products. Control experiments support a proposed hybrid palladium-catalyzed radical-polar crossover pathway, offering insights into the underlying chemical processes governing this transformation.

5.
J Mater Chem B ; 12(4): 1007-1021, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38226905

RESUMO

Diabetic wounds in a state of high glucose are refractory to treatment and healing, especially if they are infected with bacteria. Herein, a novel nanocomposite (CIP/GOx@ZIF-8) was synthesized by loading ciprofloxacin hydrochloride (CIP) and glucose oxidase (GOx) into zeolitic imidazole framework-8 (ZIF-8) that exhibited good glucose sensitivity and catalytic activity. The high glucose in diabetic wounds could be decomposed into hydrogen peroxide (H2O2) and gluconic acid via the catalysis of GOx, which further destroyed CIP/GOx@ZIF-8 to release Zn2+ and cargos. The combination of glucose starvation, Zn2+, H2O2 and CIP could elevate the antibacterial effect and reduce bacterial resistance. Subsequently, the nanocomposite was fabricated into dissolving microneedles (CIP/GOx@ZIF-8 MNs) using polyvinylpyrrolidone (PVP). The microneedles exhibited good mechanical strength, puncture performance, dissolving performance, glucose responsiveness, antibacterial performance and biocompatibility. For in vivo wound healing, CIP/GOx@ZIF-8 MNs with good biosafety facilitated neovascularization and collagen deposition as well as reduced inflammation, and the wounds were almost healed after treatment. This multimodal therapeutic strategy is created to provide a unique treatment for infected diabetic wounds.


Assuntos
Diabetes Mellitus , Nanocompostos , Zeolitas , Humanos , Glucose , Peróxido de Hidrogênio , Glucose Oxidase , Antibacterianos
6.
Nat Commun ; 15(1): 428, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200002

RESUMO

Rapid mass transfer in solid-solid reactions is crucial for catalysis. Although phoretic nanoparticles offer potential for increased collision efficiency between solids, their implementation is hindered by limited interaction ranges. Here, we present a self-driven long-range electrophoresis of organic nanocrystals facilitated by a rationally designed photogenerated outer electric field (OEF) on their surface. Employing perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) molecular nanocrystals as a model, we demonstrate that a directional OEF with an intensity of 13.6-0.4 kV m-1 across a range of 25-200 µm. This OEF-driven targeted electrophoresis of PTCDA nanocrystals onto the microplastic surface enhances the activity for subsequent decomposition of microplastics (196.8 mg h-1) into CO2 by solid-solid catalysis. As supported by operando characterizations and theoretical calculations, the OEF surrounds PTCDA nanocrystals initially, directing from the electron-rich (0 1 1) to the hole-rich [Formula: see text] surface. Upon surface charge modulation, the direction of OEF changes toward the solid substrate. The OEF-driven electrophoretic effect in organic nanocrystals with anisotropic charge enrichment characteristics indicates potential advancements in realizing effective solid-solid photocatalysis.

7.
Anal Methods ; 16(5): 731-741, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38221887

RESUMO

Herein, we present a simple and mild method to in situ prepare CuO nanostructures for non-enzymatic glucose sensing. A Cu-metal organic framework (Cu-MOF) precursor was first directly grown on a pencil lead electrode with 3D graphene-like surfaces (EPLE) and then in situ transformed into CuO nanorods. The CuO nanorod-modified EPLE (CuO/EPLE) shows high sensitivity (1138.32 µA mM-1 cm-2), fast response time (1.5 s) and low detection limit (0.11 µM) for glucose oxidation. It has been found that NaOH promoted the generation of ˙OH groups and Cu(III) on the CuO surface, which then facilitated the electrochemical oxidation of glucose. Signals characteristic of hydroxyl and carbon-centered radical adducts were detected by EPR. Furthermore, the CuO/EPLE sensor also shows good accuracy in glucose determination in human serum samples.

8.
Nat Commun ; 14(1): 7903, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036497

RESUMO

Ample evidence has suggested the stress etiology of depression, but the underlying mechanism is not fully understood yet. Here, we report that chronic social defeat stress (CSDS) attenuates the excitatory output of the claustrum (CLA) to the prelimbic cortex (PL) through the dynorphin/κ-opioid receptor (KOR) signaling, being critical for depression-related behaviors in male mice. The CSDS preferentially impairs the excitatory output from the CLA onto the parvalbumin (PV) of the PL, leading to PL micronetwork dysfunction by disinhibiting pyramidal neurons (PNs). Optogenetic activation or inhibition of this circuit suppresses or promotes depressive-like behaviors, which is reversed by chemogenetic inhibition or activation of the PV neurons. Notably, manipulating the dynorphin/KOR signaling in the CLA-PL projecting terminals controls depressive-like behaviors that is suppressed or promoted by optogenetic activation or inhibition of CLA-PL circuit. Thus, this study reveals both mechanism of the stress etiology of depression and possibly therapeutic interventions by targeting CLA-PL circuit.


Assuntos
Claustrum , Receptores Opioides kappa , Masculino , Camundongos , Animais , Receptores Opioides kappa/metabolismo , Dinorfinas , Depressão/etiologia , Claustrum/metabolismo , Transdução de Sinais/fisiologia , Camundongos Endogâmicos C57BL
9.
Adv Healthc Mater ; 12(21): e2203295, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37029522

RESUMO

Biocompatible polymer microneedles (MNs) are emerging as a promising platform for transdermal drug delivery, especially for facial treatments. Therefore, an MN patch in this study uses hydrolyzed collagen (HC) contained in skin cells as the main raw material and adopts a two-step cast method to develop a rapidly dissolving microneedle (DMN) to deliver collagen in a simple and minimally invasive way, allowing the release of the encapsulated drug in the skin. By optimizing the formulation and proportion of HC and auxiliary support materials, the mechanical strength required to pierce the skin is obtained, while the soft pedestal allows for flexibility in application. The DMNs can dissolve completely in the skin within 15 min and release within ≈ 8 h, and do not cause toxicity or irritation when being applied. In contrast to the ineffectiveness of oral and external application, and the high risk of dermal injection, drug-loaded DMNs overcome the drawbacks of traditional methods with direct penetration and minimally invasive manner, enabling efficient and safe treatment. The successful preparation and research of HC DMNs have innovative and practical significance in this field, and it is expected to become a simple, effective, and popular transdermal drug delivery platform for cosmetics.


Assuntos
Sistemas de Liberação de Medicamentos , Dermatopatias , Humanos , Sistemas de Liberação de Medicamentos/métodos , Administração Cutânea , Pele , Envelhecimento , Agulhas , Colágeno
10.
J Colloid Interface Sci ; 642: 264-272, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37004260

RESUMO

Two-dimensional materials and related plate-on-plate interfacial heterostructures offer great flexibility for integrating different atomic layers, providing an attractive scheme for the construction of built-in electric fields in photocatalysts. Here, we developed an interfacial engineering strategy to construct well-interfaced plate-on-plate BiOCl/WO3 heterojunctions for general enhanced photocatalytic oxidation reactions. BiOCl/WO3 heterojunctions exhibited significant enhancements in oxygen evolution and antibiotic degradation, with a rate of 9.5 times and 14.7 times higher than that of WO3. This enhancement is attributed to the well lattice matching contact surface of WO3 {020} plane with BiOCl {001} plane, which integrates a strong built-in electric field induced by Bi-O chemically bonds, providing atomically fast transport channels for electrons. These findings offer new guidelines for designing interfacial structures for high-performance oxidative photocatalysts and provide insights into the underlying interfacial carrier transport mechanisms.

11.
Brain Behav ; 13(5): e2970, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36999243

RESUMO

BACKGROUND: Conditioned place preference (CPP) is a common behavioral paradigm for studying the association of unconditioned stimulus reward memory with context. Generalization is a flexible memory recall pattern developed on the basis of original memory. Drug-seeking behaviors in substance use disorders (SUDs) exhibit diversity, which we generally attribute to the highly generalized features of SUD memory. However, to date, there are no animal models for SUD generalization studies. METHODS: We design the generalization box (G-box) and the generalization retrieval process based on the conditioned place preference (CPP) model. In the memory retrieval stage, we replaced the conditioning CPP box (T-box) with a generalization box (G-box) to study drug generalization memory. For appearance, the generalized boxes have different angles and numbers of sides compared to the conditioning boxes. For the visual cues, the shapes of the symbols are different (triangle icons for the hexagonal chamber and dot icons for the round chamber), but the orientation information remains the same. To establish CPP generalization, the mice received morphine on the vertical or horizontal side of a conditioning box (T-box) and saline on the other side. Then, after CPP conditioning, the generalization test was performed in a generalization box (G-box: hexagonal chamber and Gr-box: round chamber) 21 days later. RESULTS: CPP-conditioned mice still displayed a clear preference for similar visual information in the G-box. CPA-conditioned mice behaved similarly to CPP, with mice consistently avoiding similar visual information in the G-box. We further observed that the generalization results are similar using two generalization boxes (G-box and Gr-box). CONCLUSION: In this study, we succeeded in creating a simple and effective generalization model for morphine reward. The establishment of this model provides a new tool for generalization studies of SUD and therapy in humans.


Assuntos
Condicionamento Clássico , Morfina , Humanos , Camundongos , Animais , Morfina/farmacologia , Condicionamento Operante , Memória , Recompensa
12.
Brain Sci ; 12(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36552110

RESUMO

An obvious reason for substance uses disorders (SUDs) is drug craving and seeking behavior induced by conditioned context, which is an abnormal solid context memory. The relationship between susceptibility to SUD and learning ability remains unclear in humans and animal models. In this study, we found that susceptibility to morphine use disorder (MUD) was negatively correlated with learning ability in conditioned place preference (CPP) in C57 mice. By using behavioral tests, we identified the FVB mouse as learning impaired. In addition, we discovered that learning-relevant proteins, such as the glutamate receptor subunits GluA1, NR1, and NR2A, were decreased in FVB mice. Finally, we assessed the context learning ability of FVB mice using the CPP test and priming. We found that FVB mice had lower learning performance with respect to normal memory but higher performance of morphine-reinstatement memory. Compared to C57 mice, FVB mice are highly sensitive to MUDs. Our results suggest that SUD susceptibility is predicted by impaired learning ability in mice; therefore, learning ability can play a simple and practical role in identifying high-risk SUD groups.

13.
Front Mol Neurosci ; 15: 1010101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568279

RESUMO

Background: Genetic factors have been found to be associated with the efficacy and adverse reactions of antiseizure medications. BCL11A is an important regulator of the development of neuronal networks. However, the role of BCL11A in epilepsy remains unclear. This study aimed to evaluate the genetic association of BCL11A with the susceptibility to develop epileptic seizures and therapeutic response of patients with epilepsy in Han Chinese. Methods: We matched 450 epilepsy cases with 550 healthy controls and 131 drug-resistant epilepsy patients with 319 drug-responsive epilepsy patients from two different centers. Genetic association analysis, genetic interaction analysis, expression quantitative trait loci analysis and protein-protein interaction analysis were conducted. Results: Our results showed that rs2556375 not only increases susceptibility to develop epileptic seizures (OR = 2.700, 95% = 1.366-5.338, p = 0.004 and OR = 2.984, 95% = 1.401-6.356, p = 0.005, respectively), but also increases the risk of drug resistance(OR = 21.336, 95%CI =2.489-183.402, p = 0.005). The interaction between rs2556375 and rs12477097 results in increased risk for pharma coresistant. In addition, rs2556375 regulated BCL11A expression in human brain tissues (p = 0.0096 and p = 0.033, respectively). Furthermore, the protein encoded by BCL11A interacted with targets of approved antiepileptic drugs. Conclusion: BCL11A may be a potential therapeutic target for epilepsy. Rs2556375 may increase the risks of epilepsy and drug resistance by regulating BCL11A expression in human brain tissues. Moreover, the interaction between rs2556375 and rs12477097 results in increased risk for drug resistance.

14.
Curr Alzheimer Res ; 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36278470

RESUMO

AIMS: Exploring the neurobiological mechanisms of early AD damage Background: The early diagnosis of Alzheimer's disease (AD) has a very important impact on the prognosis of AD. However, the early symptoms of AD are not obvious and difficult to diagnose. Existing studies have rarely explored the mechanism of early AD. AMPARs are early important learning memory-related receptors. However, it is not clear how the expression levels of AMPARs change in early AD. OBJECTIVE: We explored learning memory abilities and AMPAR expression changes in APP/PS1 mice at 4 months, 8 months, and 12 months. METHOD: We used the classic Morris water maze to explore the learning and memory impairment of APP/PS1 mice and used western blotting to explore the changes in AMPARs in APP/PS1 mice. RESULT: We found that memory impairment occurred in APP/PS1 mice as early as 4 months of age, and the impairment of learning and memory gradually became serious with age. The changes in GluA1 and p-GluA1 were most pronounced in the early stages of AD in APP/PS1 mice. CONCLUSION: Our study found that memory impairment in APP/PS1 mice could be detected as early as 4 months of age, and this early injury may be related to GluA1.

15.
BMC Pediatr ; 22(1): 588, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36221079

RESUMO

BACKGROUND: Ligase IV (LIG4) dificiency is a very rare clinical syndrome with around 50 cases reported to date. This syndrome is caused by biallelic pathogenic variants in the LIG4 gene, which cause DNA damage repair disorders, mainly manifesting as severe immunodeficiency. CASE PRESENTATION: We report the case of a 15-month-old male child with pancytopenia, growth retardation, microcephaly, history of vaccine-related rubella, elevated immunoglobulin G, and decreased T- and B lymphocytes. Next-generation sequencing revealed LIG4 pathogenic genes and compound heterozygous mutations, namely the missense mutation c.833G > T (p.Arg278Leu) and deletion mutation c.1271_1275del (p.Lys424Argfs*20). CONCLUSION: This case suggests that LIG4 dificiency can manifest not only as immunodeficiency but also with increased serum IgG levels and pancytopenia, which constitutes an additional clinical phenotype. Furthermore, this case suggests that LIG4 deficiency should be considered upon differential diagnosis of myelodysplastic syndrome in children.


Assuntos
Síndromes de Imunodeficiência , Síndromes Mielodisplásicas , Pancitopenia , Vacinas , DNA Ligase Dependente de ATP/genética , DNA Ligases/genética , Humanos , Imunoglobulina G , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/genética , Masculino , Mutação , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Pancitopenia/etiologia
16.
Cell ; 185(17): 3124-3137.e15, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35944541

RESUMO

During development, melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) become light sensitive much earlier than rods and cones. IpRGCs project to many subcortical areas, whereas physiological functions of these projections are yet to be fully elucidated. Here, we found that ipRGC-mediated light sensation promotes synaptogenesis of pyramidal neurons in various cortices and the hippocampus. This phenomenon depends on activation of ipRGCs and is mediated by the release of oxytocin from the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) into cerebral-spinal fluid. We further characterized a direct connection between ipRGCs and oxytocin neurons in the SON and mutual projections between oxytocin neurons in the SON and PVN. Moreover, we showed that the lack of ipRGC-mediated, light-promoted early cortical synaptogenesis compromised learning ability in adult mice. Our results highlight the importance of light sensation early in life on the development of learning ability and therefore call attention to suitable light environment for infant care.


Assuntos
Ocitocina , Células Ganglionares da Retina , Animais , Encéfalo/metabolismo , Humanos , Camundongos , Células Ganglionares da Retina/fisiologia , Opsinas de Bastonetes/metabolismo
17.
Front Mol Neurosci ; 15: 871679, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782392

RESUMO

Fear memory in species varies according to the time of the day. Although the underlying molecular mechanisms have been extensively explored, they remain largely unknown. Here, we report that hippocampal Rac1 activity undergoes a time of day-dependent alteration both in nocturnal rats and diurnal tree shrews and that training at the lower hippocampal Rac1 activation period during the night leads to better contextual fear memory in rats. Furthermore, day and night reversion by 24 h darkness/24 h light housing inverses the external clock time of hippocampal Rac1 activation, but the better contextual fear memory still coincides with the lower Rac1 activation in rats during the night. Interestingly, exogenous melatonin treatment promotes hippocampal Rac1 activity and impairs better contextual fear memory acquired at the lower Rac1 activation period during the night, and Rac1-specific inhibitor NSC23766 compromises the effect of melatonin. These results suggest that the time of day-dependent alteration of hippocampal Rac1 activation regulates contextual fear memory in rats by forgetting.

18.
Parasit Vectors ; 15(1): 180, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610722

RESUMO

BACKGROUND: Lysine lactylation (Kla) is a novelposttranslational modification (PTM) identified in histone and nonhistone proteins of several eukaryotic cells that directly activates gene expression and DNA replication. However, very little is known about the scope and cellular distribution of Kla in apicomplexan parasites despite its significance in public and animal health care. METHODS: Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular apicomplexan parasite that can infect different nucleated cell types of animals and humans. We used this parasite as a model organism and extracted the total protein of tachyzoites to produce the first global lysine lactylome profile of T. gondii through liquid chromatography-tandem mass spectrometry. We also investigated the level and localization of the Kla protein in T. gondii using western blotting and the indirect fluorescent antibody test (IFA), respectively. RESULTS: A total of 983 Kla sites occurring on 523 lactylated proteins were identified in the total protein extracted from Toxoplasma tachyzoites, the acute toxoplasmosis-causing stage. Bioinformatics analysis revealed that the lactylated proteins were evolutionarily conserved and involved in a wide variety of cellular functions, such as energy metabolism, gene regulation and protein biosynthesis. Subcellular localization analysis and IFA results further revealed that most of the lactylated T. gondii proteins were localized in the nucleus, indicating the potential impact of Kla on gene regulation in the T. gondii model. Notably, an extensive batch of parasite-specific proteins unique to phylum Apicomplexa is lactylated in T. gondii. CONCLUSIONS: This study revealed that Kla is widespread in early dividing eukaryotic cells. Lactylated proteins, including a batch of unique parasite proteins, are involved in a remarkably diverse array of cellular functions. These valuable data will improve our understanding of the evolution of Kla and potentially provide the basis for developing novel therapeutic avenues.


Assuntos
Parasitos , Toxoplasma , Toxoplasmose , Animais , Lisina/química , Lisina/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/fisiologia , Toxoplasmose/parasitologia
20.
Front Neurosci ; 16: 886858, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592254

RESUMO

Animal contextual fear conditioning (CFC) models are the most-studied forms used to explore the neural substances of posttraumatic stress disorder (PTSD). In addition to the well-recognized hippocampal-amygdalar system, the retrosplenial cortex (RSC) is getting more and more attention due to substantial involvement in CFC, but with a poor understanding of the specific roles of its two major constituents-dysgranular (RSCd) and granular (RSCg). The current study sought to identify their roles and underlying brain network mechanisms during the encoding processing of the rat CFC model. Rats with pharmacologically inactivated RSCd, RSCg, and corresponding controls underwent contextual fear conditioning. [18F]-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) scanning was performed for each animal. The 5-h and 24-h retrieval were followed to test the formation of contextual memory. Graph theoretic tools were used to identify the brain metabolic network involved in encoding phase, and changes of nodal (brain region) properties linked, respectively, to disturbed RSCd and RSCg were analyzed. Impaired retrieval occurred in disturbed RSCd animals, not in RSCg ones. The RSC, hippocampus (Hip), amygdala (Amy), piriform cortex (Pir), and visual cortex (VC) are hub nodes of the brain-wide network for contextual fear memory encoding in rats. Nodal degree and efficiency of hippocampus and its connectivity with amygdala, Pir, and VC were decreased in rats with disturbed RSCd, while not in those with suppressed RSCg. The RSC plays its role in contextual fear memory encoding mainly relying on its RSCd part, whose condition would influence the activity of the hippocampal-amygdalar system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...