Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1160: 338380, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-33894959

RESUMO

The sensitivity for analytes of interest is vital for environment protection and food safety. Here, we propose an extremely sensitive assay toward Pb2+ by using gold nanostars (GNSs) as probes based on the catalytic activity of Pb on etching gold atoms after being reduced in the presence of 2-mercaptoethanol (2-ME) and sodium thiosulfate. GNSs were prepared by using 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid as both the reducing and capping agents, enabling high stability and sensitivity for quantitation of Pb2+. Upon increasing Pb2+ concentration over the range of 0-10 µM, GNS solution color changed from greenish-blue to blue to purple to red, and eventually to colorless. The color change can be distinguished by naked eye at the Pb2+ concentration as low as 200 pM. Through monitoring longitudinal localized surface plasmon of GNSs, Pb2+ could be detected with a limit of detection of 1.5 pM, and the working range is 2 pM-1 µM. The ultra-high sensitivity of our assay stems from the high catalysis of Pb on etching gold on tips and branches in the presence of 2-ME and sodium thiosulfate, leading to the shape deformation to spherical gold nanoparticle and the corresponding significant changes in their optical properties. The assay provides high selectivity of Pb2+ over the tested interfering metal ions like Cu2+. With high sensitivity and selectivity, the assay was efficiently validated by analyzing water samples and monitoring the migration of Pb2+ from the tested container to water.

2.
J Food Drug Anal ; 29(1): 144-152, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35696219

RESUMO

We propose a convenient and easy colorimetric assay for highly sensitive detection of iodide by using gold nanostars (GNSs) as probes. The assay relies on that iodide directly changes the morphology of GNSs and alters their longitudinal localized surface plasmon resonance (LSPR) without surface modifications and the use of other reagents. Upon increasing iodide concentration, GNSs gradually transformed to sphere gold nanoparticles, the absorbance at longitudinal LSPR decreased, and solution color varied from greenish blue to red, as confirmed by the UV-Vis absorption spectroscopy and transmission electron microscopy. With this strategy, as low as 0.005 µM of iodide can be determined due to the specific properties of GNS with plenty of tips and corners and high surface-to-volume ratio. The detection was simply achieved by mixing testing samples and GNS solution. Many ions like CO32-, S2- did not interfere with iodide detection since only iodide can trigger GNS geometry change through an electron injection process. The iodide contents in river water, table salt, seaweed, and complex vitamin tablet were quantified with great accuracy. The proposed assay shows great promises for environment protection and food safety. Moreover, GNSs are useful in developing colorimetric assays for biochemical analysis or clinical diagnosis.


Assuntos
Ouro , Nanopartículas Metálicas , Colorimetria/métodos , Ouro/química , Iodetos/análise , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície/métodos
3.
RSC Adv ; 10(21): 12619-12625, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35497578

RESUMO

Gold nanorods (GNRs) with desired longitudinal localized surface plasmon resonance (LLSPR) and strong scattering intensity are important for extending their practical applications in bioimaging and sensing. Herein, a simple additive (HCl and Na2S)-regulated overgrowth approach has been proposed for preparing GNRs with tunable LLSPR. In this approach, HCl is used to slow down the growth reaction rate by changing chemical equilibrium, while Na2S is utilized to halt the reaction when LLSPR is reaching the expected wavelength under monitoring by a UV-Vis spectrometer. Under optimal conditions, GNRs with an LLSPR range from 850 to 650 nm could be facilely prepared with a high precision of 3 nm deviation. The TEM images reveal that GNRs have high monodispersity, displaying an increase in both length and diameter but a decrease in the aspect ratio. With the increase in size, the produced GNRs show enhanced scattering intensity and are applicable for single nanoparticle imaging due to the enlarged absorption and scattering cross-section and improved matching efficiency toward the CCD response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...