Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38790626

RESUMO

Rice (Oryza sativa L.) is one of the most important food crops worldwide. However, during direct seeding, rice is extremely vulnerable to flooding stress, which impairs rice's emergence and seedling growth and results in a significant yield loss. According to our research, chitosan oligosaccharides have the potential to be a chemical seed-soaking agent that greatly increases rice's resistance to flooding. Chitosan oligosaccharides were able to enhance seed energy supply, osmoregulation, and antioxidant capacity, according to physiological index assessments. Using transcriptome and metabolomic analysis, we discovered that important differential metabolites and genes were involved in the signaling pathway for hormone synthesis and antioxidant capacity. Exogenous chitosan oligosaccharides specifically and significantly inhibit genes linked to auxin, jasmonic acid, and abscisic acid. This suggested that applying chitosan oligosaccharides could stabilize seedling growth and development by controlling associated hormones and reducing flooding stress by enhancing membrane stability and antioxidant capacity. Finally, we verified the effectiveness of exogenous chitosan oligosaccharides imbibed in seeds by field validation, demonstrating that they can enhance rice seedling emergence and growth under flooding stress.

2.
Plants (Basel) ; 12(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36840044

RESUMO

Barnyardgrass (Echinochloa crus-galli L.) is the most serious weed threatening rice production, and its effects are aggravated by resistance to the quinclorac herbicide in the Chinese rice fields. This study conducted a comparative proteomic characterization of the quinclorac-treated and non-treated resistant and susceptible E. crus-galli using isobaric tags for relative and absolute quantification (iTRAQ). The results indicated that the quinclorac-resistant E. crus-galli had weaker photosynthesis and a weaker capacity to mitigate abiotic stress, which suggested its lower environmental adaptability. Quinclorac treatment significantly increased the number and expression of the photosynthesis-related proteins in the resistant E. crus-galli and elevated its photosynthetic parameters, indicating a higher photosynthetic rate compared to those of the susceptible E. crus-galli. The improved adaptability of the resistant E. crus-galli to quinclorac stress could be attributed to the observed up-regulated expression of eight herbicide resistance-related proteins and the down-regulation of two proteins associated with abscisic acid biosynthesis. In addition, high photosynthetic parameters and low glutathione thiotransferase (GST) activity were observed in the quinclorac-resistant E. crus-galli compared with the susceptible biotype, which was consistent with the proteomic sequencing results. Overall, this study demonstrated that the resistant E. crus-galli enhanced its adaptability to quinclorac by improving the photosynthetic efficiency and GST activity.

3.
Plants (Basel) ; 11(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36235371

RESUMO

Botanical compounds with herbicidal activity exhibit safety, low toxicity, and low chances of herbicide resistance development in plants. They have widespread applications in green agricultural production and the development of organic agriculture. In the present study, dihydrocoumarin showed potential as a botanical herbicide, and its phenotypic characteristics and mechanism of action were studied in barnyardgrass [Echinochloa crus-galli (L.) P.Beauv.] seedlings. The results indicated that dihydrocoumarin inhibited the growth of barnyardgrass without causing significant inhibition of rice seedling growth at concentrations ranging between 0.5 and 1.0 g/L. Additionally, dihydrocoumarin treatment could cause oxidative stress in barnyardgrass, disrupt the cell membrane, and reduce the root cell activity, resulting in root cell death. Transcriptomic analyses revealed that dihydrocoumarin could inhibit barnyardgrass normal growth by affecting the signal transduction of plant hormones. The results showed significant differential expression of plant hormone signal transduction genes in barnyardgrass. Additionally, dihydrocoumarin interfered with the expression of numerous phenylpropanoid biosynthesis genes in barnyardgrass that affect the production of various vital metabolites. We speculate that the barnyardgrass growth was suppressed by the interaction among hormones and phenylpropanoid biosynthesis genes, indicating that dihydrocoumarin can be applied as a bioherbicide to control barnyardgrass growth in rice transplanting fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...