Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 291(10): 2221-2241, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38400523

RESUMO

It was reported that the Wnt/ß-catenin pathway is involved in the regulation of aerobic glycolysis and that brain glycolytic dysfunction results in the development of Alzheimer's disease (AD). Icariin (ICA), an active component extracted from Epimedii Folium, has been reported to produce neuroprotective effects in multiple models of AD, but its underlying mechanism remains to be fully described. We aimed to investigate the protective effects of ICA on animal and cell models of AD and confirm whether the Wnt/ß-catenin pathway has functions in the neuroprotective function of ICA. The 3 × Tg-AD mice were treated with ICA. HT22 cells, the Aß25-35 peptide and Dickkopf-1 (DKK1) agent (a specific inhibitor of the Wnt/ß-catenin pathway) were used to further explore the underlying mechanism of ICA that produces anti-AD effects. Behavioral examination, western blotting assay, staining analysis, biochemical test, and lactate dehydrogenase (LDH) assays were applied. We first demonstrated that ICA significantly improved cognitive function and autonomous behavior, reduced neuronal damage, and reversed the protein levels and activities of glycolytic key enzymes, and expression of protein molecules of the canonical Wnt signaling pathway, in 3 × Tg-AD mice back to wild-type levels. Next, we further found that ICA increased cell viability and effectively improved the dysfunctional glycolysis in HT22 cells injured by Aß25-35. However, when canonical Wnt signaling was inhibited by DKK1, the above effects of ICA on glycolysis were abolished. In summary, ICA exerts neuroprotective effects in 3 × Tg-AD animals and AD cellular models by enhancing the function of glycolysis through activation of the Wnt/ß-catenin pathway.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Flavonoides , Glicólise , Camundongos Transgênicos , Via de Sinalização Wnt , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Via de Sinalização Wnt/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Flavonoides/farmacologia , Camundongos , Peptídeos beta-Amiloides/metabolismo , beta Catenina/metabolismo , beta Catenina/genética , Fármacos Neuroprotetores/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Fragmentos de Peptídeos/metabolismo , Masculino
2.
Front Aging Neurosci ; 15: 1218267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744386

RESUMO

Objective: To investigate the mechanism of RNA-binding protein hnRNP A1 in mouse hippocampal neurons (HT22) on glycolysis. Methods: RIP and CLIP-qPCR were performed by HT22 in vitro to observe the mechanism of hnRNP A1 regulating the expression of key proteins in glycolysis. The RNA binding domain of hnRNP A1 protein in HT22 was inhibited by VPC-80051, and the effect of hnRNP A1 on glycolysis of HT22 was observed. Lentivirus overexpression of hnRNP A1 was used to observe the effect of overexpression of hnRNP A1 on glycolysis of Aß25-35-injured HT22. The expression of hnRNP A1 in brain tissues of wild-type mice and triple-transgenic (APP/PS1/Tau) AD mice at different ages was studied by Western blot assay. Results: The results of RIP experiment showed that hnRNP A1 and HK1 mRNA were significantly bound. The results of CLIP-qPCR showed that hnRNP A1 directly bound to the 2605-2821 region of HK1 mRNA. hnRNP A1 inhibitor can down-regulate the expression of HK1 mRNA and HK1 protein in HT22 cells. Overexpression of hnRNP A1 can significantly reduce the toxic effect of Aß25-35 on neurons via the hnRNP A1/HK1/ pyruvate pathway. In addition, inhibition of hnRNP A1 binding to amyloid precursor protein (APP) RNA was found to increase Aß expression, while Aß25-35 also down-regulated hnRNP A1 expression by enhancing phosphorylation of p38 MAPK in HT22. They interact to form bidirectional regulation, further down-regulating the expression of hnRNP A1, and ultimately aggravating glycolytic dysfunction. Protein immunoblotting showed that hnRNP A1 decreased with age in mouse brain tissue, and the decrease was greater in AD mice, suggesting that the decrease of hnRNP A1 may be a predisposed factor in the pathogenesis of AD.

3.
Neural Regen Res ; 18(1): 183-188, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35799540

RESUMO

Icariin, a major prenylated flavonoid found in Epimedium spp., is a bioactive constituent of Herba Epimedii and has been shown to exert neuroprotective effects in experimental models of Alzheimer's disease. In this study, we investigated the neuroprotective mechanism of icariin in an APP/PS1/Tau triple-transgenic mouse model of Alzheimer's disease. We performed behavioral tests, pathological examination, and western blot assay, and found that memory deficits of the model mice were obviously improved, neuronal and synaptic damage in the cerebral cortex was substantially mitigated, and amyloid-ß accumulation and tau hyperphosphorylation were considerably reduced after 5 months of intragastric administration of icariin at a dose of 60 mg/kg body weight per day. Furthermore, deficits of proteins in the insulin signaling pathway and their phosphorylation levels were significantly reversed, including the insulin receptor, insulin receptor substrate 1, phosphatidylinositol-3-kinase, protein kinase B, and glycogen synthase kinase 3ß, and the levels of glucose transporter 1 and 3 were markedly increased. These findings suggest that icariin can improve learning and memory impairments in the mouse model of Alzheimer's disease by regulating brain insulin signaling and glucose transporters, which lays the foundation for potential clinical application of icariin in the prevention and treatment of Alzheimer's disease.

4.
Huan Jing Ke Xue ; 43(11): 4876-4887, 2022 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-36437060

RESUMO

China is one of the largest rice producers in the world, and rice production plays an important role in food security. Currently, arsenic pollution in paddy soils is one of most serious soil pollutions in China. Since paddy soils are maintained in a flooding anoxic condition for long periods, the rate and extent of arsenic transformation processes governed by microbial activities are stronger than that of chemical processes. Thus, understanding the key processes and relating mechanisms of microbial arsenic fixation in paddy soils will provide a theoretical basis for controlling arsenic pollution in paddy soils. In this study, based on a comprehensive analysis of arsenic migration in paddy soils and relating influencing factors, two important pathways relating to As(Ⅲ) fixation through microbial activities were illustrated:microbial CFe(Ⅱ) oxidation coupled with As(Ⅲ) fixation (indirect process) and direct fixation through microbial As(Ⅲ) oxidation (direct process). Additionally, the influences of speciation and the distribution of nitrogen in paddy soils to the processes of microbial arsenic fixations were discussed and by extension, the expressions of key genes and metabolic mechanisms relating to microbial arsenic fixation and nitrogen transformation. Finally, the recent advances in microbial remediation used to control arsenic pollution in paddy soils were summarized, and relating future perspectives targeting microbial remediation were proposed.


Assuntos
Arsênio , Solo , Nitrogênio , Inundações , Clima
5.
Biomedicines ; 10(11)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36359319

RESUMO

Objective: To investigate the protective effects of Dendrobium nobile Lindl. alkaloids (DNLA) against chronic alcoholic liver injury. C57BL/6J mice were fed with the Lieber−DeCarli alcohol diet to induce chronic alcoholic liver injury. DNLA (20 mg/kg/day) was gavaged along with the alcohol diet for 28 days. Liver injury was evaluated by serum enzymes. Triglyceride levels, histopathology, and transcriptome changes were examined by RNA-Seq and qPCR. DNLA decreased serum triglyceride levels in mice receiving alcohol. Hepatocyte degeneration and steatosis were ameliorated by DNLA, as evidenced by H&E and Oil-red O staining. DNLA brought the alcohol-induced aberrant gene expression pattern towards normal. Alcohol induced 787 differentially expressed genes (padj < 0.01). DNLA induced 280 differentially expressed genes to a much less extent. Ingenuity pathway analysis showed that DNLA ameliorated alcohol-induced oxidative stress and xenobiotic metabolism disruption. qPCR verified that DNLA alleviated over-activation of Cyp2a4, Cyp2b10, and Abcc4; attenuated oxidative stress (Hmox1, Gstm3, Nupr1), reduced the expression of Nrf2 genes (Nqo1, Gclc, Vldlr); and rescued some metabolic genes (Insig1, Xbp1, Socs3, Slc10a2). In conclusion, DNLA was effective against alcohol-induced fatty liver disease, and the protection may be attributed to alleviated oxidative stress and restored metabolism homeostasis, probably through modulating nuclear receptor CAR-, PXR-, and Nrf2-mediated gene expression pathways.

6.
J Pharmacol Exp Ther ; 369(1): 121-128, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30837279

RESUMO

Icariin (ICA), a major flavonoid extracted from the Chinese tonic herb Epimedium, exerts beneficial effects in a variety of age-dependent diseases, such as Alzheimer's disease (AD). However, the antiaging mechanisms remain unclear. The senescence-accelerated mouse-prone 8 (SAMP8) model has been used to study age-related neurodegenerative changes associated with aging and the pathogenesis of AD. Hence, the current study was designed to examine the effect of ICA on age-related cognitive decline in SAMP8 mice and explore the role of autophagy in the ICA-mediated neuroprotection. SAMP8 mice were administered with ICA starting at 5 months of age, and the treatment lasted for 3 consecutive months. Morris water maze was used to evaluate cognitive function. The senescence-associated ß-galactosidase staining was used to determine the number of senescence cells. The neuronal morphologic changes were examined via Nissl staining. The hippocampal neuronal ultrastructure was examined by transmission electron microscopy. The expression of autophagy protein was examined by Western blot. ICA-treated SAMP8 mice exhibited a robust improvement in spatial learning and memory function. Meanwhile, ICA reduced the number of senescence cells in the brains of SAMP8 mice, inhibited neuronal loss, and reversed neuronal structural changes in the hippocampi of SAMP8 mice. Moreover, ICA treatment also decreased the formation of autophagosomes in the hippocampus of SAMP8 mice, and reduced the expression of autophagy-related proteins LC3-II and p62. These results demonstrate that ICA possesses the ability to delay brain aging in SAMP8 mice, and the mechanisms are possibly mediated through the regulation of autophagy.


Assuntos
Envelhecimento/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Flavonoides/farmacologia , Animais , Encéfalo/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Memória/efeitos dos fármacos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Animais
7.
Behav Brain Res ; 339: 57-65, 2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29158110

RESUMO

It is well known that Alzheimer's disease (AD) is closely related to diabetes mellitus (DM), and AD is also regarded as Type 3 diabetes (T3D). However, the exact link between AD and DM is still unclear. Recently, more and more evidence has shown that glycogen synthase kinase-3ß (GSK-3ß) may be the potential link between DM and AD. In DM, GSK-3ß is the crucial enzyme of glycogen synthesis, which plays a key role in regulating blood glucose. More importantly, GSK-3ß is one of the key factors leading to insulin deficiency and insulin resistance, and insulin resistance is an important hallmark of the occurrence and development of DM. In AD, GSK-3ß plays an important role in hyperphosphorylation of microtubule-associated protein tau (tau), which is one of the pathological features in AD. GSK-3ß is one of the important kinases of tau phosphorylation and is involved in the insulin/phosphoinositide 3-kinase/protein kinase B (insulin/PI3K/Akt) signaling pathway. Dysfunction of the insulin/PI3K/Akt signaling pathway, which regulates glucose metabolism in the brain, can lead to tau hyperphosphorylation in the brain of AD patents. Additionally, insulin resistance in DM may cause ß-amyloid (Aß) deposition, which will be cleared by tau, but excessive phosphorylation of tau will further aggravate the neurotoxicity; then damage the brain and affect the cognitive function. GSK-3ß is considered as a common kinase in insulin signaling transduction and tau protein phosphorylation, so we have reasons to believe that GSK-3ß is a potential link between DM and AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Diabetes Mellitus/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Insulina/metabolismo , Doença de Alzheimer/patologia , Animais , Humanos , Proteínas tau/metabolismo
8.
Front Mol Neurosci ; 10: 441, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375304

RESUMO

Parkinson's disease (PD) is one of the most common neurodegenerative diseases characterized with a gradual loss of midbrain substantia nigra (SN) dopamine (DA) neurons. An excessive evidence demonstrated that microglia-mediated inflammation might be involved in the pathogenesis of PD. Thus, inhibition of neuroinflammation might possess a promising potential for PD treatment. Icariin (ICA), a single active component extracted from the Herba Epimedii, presents amounts of pharmacological properties, such as anti-inflammation, anti-oxidant, and anti-aging. Recent studies show ICA produced neuroprotection against brain dysfunction. However, the mechanisms underlying ICA-exerted neuroprotection are fully illuminated. In the present study, two different neurotoxins of 6-hydroxydopamine (6-OHDA) and lipopolysaccharide (LPS)-induced rat midbrain DA neuronal damage were applied to investigate the neuroprotective effects of ICA. In addition, primary rat midbrain neuron-glia co-cultures were performed to explore the mechanisms underlying ICA-mediated DA neuroprotection. In vitro data showed that ICA protected DA neurons from LPS/6-OHDA-induced DA neuronal damage and inhibited microglia activation and pro-inflammatory factors production via the suppression of nuclear factor-κB (NF-κB) pathway activation. In animal results, ICA significantly reduced microglia activation and significantly attenuated LPS/6-OHDA-induced DA neuronal loss and subsequent animal behavior changes. Together, ICA could protect DA neurons against LPS- and 6-OHDA-induced neurotoxicity both in vivo and in vitro. These actions might be closely associated with the inhibition of microglia-mediated neuroinflammation.

9.
Behav Brain Res ; 316: 234-244, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27591966

RESUMO

Recently, more and more studies have shown that there is an essential link between diabetes mellitus (DM) and Alzheimer's disease (AD). In addition, innate immunity plays an important role in the occurrence and development of DM and AD, which increase the risk of developing type 2 diabetes (T2D) and AD. Although the pathogenesis of those diseases is still a matter of debate, the important role of Toll-like receptor 4 (TLR4) in the two diseases has been receiving much attention at present. TLR4 and insulin resistance do have close ties, and chronic TLR4 activation may contribute to the insulin resistance. Aside from this, TLR4-mediated chronic inflammation also causes many DM complications such as diabetic nephropathy, diabetic retinopathy and diabetic neuropathy and has a profound impact on the internal environment of the body and brain's microenvironment. In parallel, TLR4 is widely distributed in the brain and also has an important role in the central nervous system (CNS) via regulation of neuroinflammation. The cerebrum under the circumstances of insulin resistance may lead to mitochondrial dysfunction in neurons. Interestingly, in the initial stage, the activation of TLR4 has a useful scavenging effect on amyloid beta (Aß), but chronic long-term activation leads to Aß deposition in the brain. Therefore we speculate that the TLR4 signaling pathway may be a potential link between DM and AD.


Assuntos
Doença de Alzheimer/metabolismo , Diabetes Mellitus/metabolismo , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/metabolismo , Peptídeos beta-Amiloides/metabolismo , Humanos , Resistência à Insulina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...