Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e28736, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586342

RESUMO

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that seriously affects the life quality of patients. As a patent medicine of Chinese traditional medicine, YuXueBi capsule (YXBC) is widely used for treating RA with significant effects. However, its active compounds and therapeutic mechanisms are not fully illuminated, encumbering the satisfactory clinical application. In this study, we developed a method for identifying the chemical compounds of YXBC and the absorbed compounds into blood of rats using ultra performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (UPLC/IM-QTOF-MS) combined with UNIFI analysis software. A total of 58 compounds in YXBC were unambiguously or tentatively identified, 16 compounds from which were found in serum of rats after administration of YXBC. By network pharmacology, these prototype compounds identified in serum were predicted to regulate 30 main pathways (including HIF-1 signaling pathway, neuroactive ligand-receptor interaction, IL-17 signaling pathway, and so on) through 146 targets, resulting in promoting blood circulation and removing blood stasis, analgesia, and anti-inflammatory activities. This study provides a scientific basis for the clinical efficacy of YXBC in the treatment of RA.

2.
Biochem Biophys Res Commun ; 692: 149342, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38061283

RESUMO

Glucocorticoid synthesis typically occurs in adrenal cortex and is influenced by cholesterol balance, since cholesterol is the sole precursor of steroids. Bile acids as the signaling molecules, have been shown to promote steroidogenesis in steroidogenic cells. However, whether bile acids directly regulate cholesterol balance remains elusive. In this study, we prepared cholestatic mouse models and cultured human adrenocortical cells (H295R) treated with taurochenodeoxycholic acid (TCDCA) to determine transcription levels of cholesterol metabolism associated genes and cholesterol concentrations in adrenocortical cells. Results showed that common bile duct ligation (CBDL) and chenodeoxycholic acid (CDCA) feeding elevated the mRNA levels of Abca1, Cyp51, Hmgcr, Srb1, and Mc2r in adrenals of mice. Meanwhile, the concentrations of total cholesterol and cholesteryl ester in adrenals of CBDL and CDCA-fed mice were dramatically lowered. The total and phosphorylation levels of HSL in adrenal glands of CBDL mice were also enhanced. Similarly, TCDCA treatment in H295R cells decreased intracellular concentrations of total cholesterol and cholesteryl ester and increased transcription levels of SRB1, MC2R, and HSL as well. Inhibition of bile acids' receptor sphingosine 1-phosphate receptor 2 (S1PR2), extracellular signal-regulated kinase (ERK) phosphorylation, and steroidogenic factor 1 (SF-1) respectively successfully abolished effect of TCDCA on H295R cells. SF-1s was found to be phosphorylated at Thr75 in TCDCA-treated H295R cells. While a mild increase of intracellular cAMP concentration was detected upon TCDCA treatment, inhibition of PKA activity with Rp-Isomer in H295R cells failed to decrease the expression of SF-1 and its target genes. Our findings suggest that conjugated bile acids affect cholesterol balance through regulation of SF-1 in adrenocortical cells so as to provide an adequate cholesterol supply for glucocorticoid synthesis, which improves and enriches our understanding of the mechanism whereby bile acids regulate cholesterol balance to affect adrenal function.


Assuntos
Ácidos e Sais Biliares , Glucocorticoides , Humanos , Camundongos , Animais , Fator Esteroidogênico 1/genética , Ésteres do Colesterol , Receptores de Esfingosina-1-Fosfato , Colesterol/metabolismo , Esteroides/metabolismo , Ácido Quenodesoxicólico , Ácido Tauroquenodesoxicólico
3.
Front Immunol ; 8: 998, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28861090

RESUMO

Natural killer (NK) cells serve an important role in immune system by recognizing and killing the potentially malignant cells without antigen sensitization, and could be promising in cancer therapy. We have designed and fabricated microwell arrays with microchannel connections in polydimethylsiloxane (PDMS) substrates to study the interaction dynamics of NK-92MI cells with MCF7 breast cancer cells using time-lapse imaging by fluorescence microscopy for 15 h. Although cell seeding density was the same, NK cell cytotoxicity was found to be higher in larger microwells, which is manifested as increased target death ratio from 13.7 ± 3.1 to 46.3 ± 3.3% and shorter triggering time of first target lysis from 502 ± 49 to 391 ± 63 min in 150 µm × 150 µm microwells comparing to 50 µm × 50 µm wells in 15 h. Mirochannel connection between adjacent microwells of the same size increased the overall target death ratio by >10%, while connection between microwells of different sizes led to significantly increased target death ratio and delayed first target lysis in smaller microwells. Our findings reveal unique cell interaction dynamics, such as initiation and stimulation, of NK cell cytotoxicity in a confined microenvironment, which is different from population-based study, and the results could lead to a better understanding of the dynamics of NK cell cytotoxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...