Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 222: 118852, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35908481

RESUMO

Acidic waters such as groundwater, drainage and lakes in mining area contain high-strength acids and metal ions, posing serious threats to aquatic ecosystems and human health. Dissimilatory sulfate reduction (DSR)-based processes are attractive technologies for remediating acidic waters because it produces alkalinity and sulfide for metal precipitation and acid neutralization. However, the effects of pH elevation achieved by DSR-based processes are case-sensitive and difficult to be quantitively assessed, which limits the application of DSR process for acidic water remediation. Therefore, in this study, a Sulfidogenic Acid mine water Remediation Model (SARM) considering the DSR process, weak acids balance, metal sulfide and hydroxide precipitations, and gas-liquid exchanges of H2S and CO2, was developed to quantitatively assess the effects of various environmental factors on the pH elevation by a DSR process in acidic waters. A long-term trial of a DSR reactor was conducted to calibrate and validate the SARM. The experimental results revealed that the DSR-based process is effective to relieve acidity. The calibrated SARM demonstrated the excellent performance to predict the pH variation in the DSR reactor, under the varied conditions of influent pH and organic concentration. The calibrated SARM was further validated with data collected from literatures, and the results verified that the proposed model is capable to accurately assess the effect of DSR process on acid neutralization and metal removals under various conditions in steady state. The model was employed to systematically evaluate the impacts of environmental factors on acid remediation within a DSR-based process. The results revealed that the background alkalinity plays an important role in acid neutralization. However, with an increase in sulfate reduction, biogenic sulfide and carbonate become the dominant buffering substances to neutralize acidity. Furthermore, the SARM was used to evaluate the applicability of the DSR-based process for the remediation of acidic waters by evaluating the sulfide production thresholds for acid neutralization and metal removal. The simulation results demonstrated that, the DSR-based process is recommended for the remediation of acidic waters with low background alkalinity. Collectively, the SARM proposed in this study was found to be a useful and efficient tool for quantitatively assessing the potential of DSR-based processes for neutralizing acidic waters, which is vital for biogeochemistry and environmental engineering research.


Assuntos
Ácidos , Ecossistema , Ácidos/química , Humanos , Concentração de Íons de Hidrogênio , Metais/química , Sulfatos/química , Sulfetos/química , Água/química
2.
Water Res ; 204: 117628, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34507021

RESUMO

Both biological sulfate reduction process and sulfur reduction process are attractive technologies for metal-laden wastewater treatment. However, the acidity stress of metal-laden wastewater could affect the sulfidogenic performance and the microbial community, weaken the stability, efficiency and cost-effectiveness of the biological sulfidogenic processes (BSP). In this study, long-term lab-scale trials were conducted with a sulfate-reducing bioreactor and a sulfur-reducing bioreactor to evaluate the effects of acidity on sulfidogenic activities and the microbial community of the BSP. In the 300-day trial, the sulfate-reducing bacteria (SRB)-driven BSP was stable in terms of sulfidogenic performance and microbial community with the decline of pH, while the sulfur-reducing bacteria (S0RB)-driven BSP achieved high-rate and low-cost sulfide production under neutral conditions but unstable under acidic conditions. With the decline of pH, the sulfide production rate (SPR) of the SRB-driven BSP stably increased from 30 to 83 mg S/L-h; while it decreased from 56 to 37 mg S/L-h in the S0RB-driven BSP with high fluctuation. The results of estimation were consistent with the thermodynamical calculations, in which the sulfur reduction process showed a better performance at pH 5-7, while the sulfate reduction process might gain more energy when pH<5. The stable sulfidogenic performance and microbial community diversity of the SRB-driven BSP could be attributed to the alkalinity produced in sulfate reduction to buffer the acidic stress. In comparison, the microbial community in the S0RB-driven BSP was significantly re-shaped by acidity stress, and the predominant sulfidogenic bacterium changed from Desulfovibrio at neutral condition, to Desulfurella at pH≤5.4. The stability of the microbial community significantly affected the SPR and the operational cost. Nevertheless, the organic consumption for sulfide production of the S0RB-driven BSP was still less than the SRB-driven BSP even in acidic conditions. Collectively, the S0RB-driven BSP was recommended under neutral or mild acid conditions, while the SRB-driven BSP was more suitable under fluctuating pH conditions, especially at low pH. Overall, this study presented the long-term performance of SRB- and S0RB-driven BSP under varying pH conditions, and provided guidance to determine the suitable BSP and operational cost for different metal-laden wastewater.


Assuntos
Enxofre , Águas Residuárias , Concentração de Íons de Hidrogênio , Metais , Sulfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...