Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 16: 1369014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711597

RESUMO

Backgrounds: Numerous lines of evidence support the intricate interplay between Parkinson's disease (PD) and the PINK1-dependent mitophagy process. This study aimed to evaluate differences in plasma PINK1 levels among idiopathic PD, PD syndromes (PDs), and healthy controls. Methods: A total of 354 participants were included, consisting of 197 PD patients, 50 PDs patients, and 107 healthy controls were divided into two cohorts, namely the modeling cohort (cohort 1) and the validated cohort (cohort 2). An enzyme-linked immunosorbent assay (ELISA)-based analysis was performed on PINK1 and α-synuclein oligomer (Asy-no). The utilization of the area under the curve (AUC) within the receiver-operating characteristic (ROC) curves served as a robust and comprehensive approach to evaluate and quantify the predictive efficacy of plasma biomarkers alone, as well as combined models, in distinguishing PD patients from controls. Results: PINK1 and Asy-no were elevated in the plasma of PD and PDs patients compared to healthy controls. The AUCs of PINK1 (0.771) and Asy-no (0.787) were supposed to be potentially eligible plasma biomarkers differentiating PD from controls but could not differentiate PD from PDs. Notably, the PINK + Asy-no + Clinical RBD model showed the highest performance in the modeling cohort and was comparable with the PINK1 + Clinical RBD in the validation cohort. Moreover, there is no significant correlation between PINK1 and UPDRS, MMSE, HAMD, HAMA, RBDQ-HK, and ADL scores. Conclusion: These findings suggest that elevated PINK1 in plasma holds the potential to serve as a non-invasive tool for distinguishing PD patients from controls. Moreover, the outcomes of our investigation lend support to the plausibility of implementing a feasible blood test in future clinical translation.

2.
CNS Neurosci Ther ; 30(2): e14357, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37438991

RESUMO

OBJECTIVES: The ATN's different modalities (fluids and neuroimaging) for each of the Aß (A), tau (T), and neurodegeneration (N) elements are used for the biological diagnosis of Alzheimer's disease (AD). We aim to identify which ATN category achieves the highest potential for diagnosis and predictive accuracy of longitudinal cognitive decline. METHODS: Based on the availability of plasma ATN biomarkers (plasma-derived Aß42/40 , p-tau181, NFL, respectively), CSF ATN biomarkers (CSF-derived Aß42 /Aß40 , p-tau181, NFL), and neuroimaging ATN biomarkers (18F-florbetapir (FBP) amyloid-PET, 18F-flortaucipir (FTP) tau-PET, and fluorodeoxyglucose (FDG)-PET), a total of 2340 participants were selected from ADNI. RESULTS: Our data analysis indicates that the area under curves (AUCs) of CSF-A, neuroimaging-T, and neuroimaging-N were ranked the top three ATN candidates for accurate diagnosis of AD. Moreover, neuroimaging ATN biomarkers display the best predictive ability for longitudinal cognitive decline among the three categories. To note, neuroimaging-T correlates well with cognitive performances in a negative correlation manner. Meanwhile, participants in the "N" element positive group, especially the CSF-N positive group, experience the fastest cognitive decline compared with other groups defined by ATN biomarkers. In addition, the voxel-wise analysis showed that CSF-A related to tau accumulation and FDG-PET indexes more strongly in subjects with MCI stage. According to our analysis of the data, the best three ATN candidates for a precise diagnosis of AD are CSF-A, neuroimaging-T, and neuroimaging-N. CONCLUSIONS: Collectively, our findings suggest that plasma, CSF, and neuroimaging biomarkers differ considerably within the ATN framework; the most accurate target biomarkers for diagnosing AD were the CSF-A, neuroimaging-T, and neuroimaging-N within each ATN modality. Moreover, neuroimaging-T and CSF-N both show excellent ability in the prediction of cognitive decline in two different dimensions.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Fluordesoxiglucose F18 , Neuroimagem , Disfunção Cognitiva/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Biomarcadores , Proteínas tau , Peptídeos beta-Amiloides
3.
CNS Neurosci Ther ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990436

RESUMO

BACKGROUND: Despite extensive work to identify diagnostic plasma markers for Parkinson's disease (PD), there are still no accepted and validated surrogate biomarkers. Mitophagy-associated proteins (MAPs), including PTEN-induced putative kinase 1 (PINK1), Parkin, phosphoglycerate mutase 5 (PGAM5), BCL2 interacting protein 3 (BNIP3), and phosphorylated-TBK1 (p-TBK1), are, to our best knowledge, not well studied as a panel of biomarkers of neurodegeneration in PD. METHODS: The study population comprised 116 age-matched controls (HC), 179 PD patients, alongside and 90 PD syndromes (PDs) divided between two cohorts: (i) the modeling cohort (cohort 1), including 150 PD, 97 HC, and 80 PDs; and (ii) the validated cohort (cohort 2), including 29 PD, 19 HC, and 10 PDs. RESULTS: MAPs are elevated in the plasma of PD patients. PINK1, Parkin, and PGAM5 displayed the top three measurable increase trends in amplitude compared to BNIP3 and p-TBK1. Moreover, the area under the curve (AUC) values of PINK1, PGAM5, and Parkin were ranked the top three MAP candidates in diagnosis accuracy for PD from HC, but the MAPs make it hard to differentiate PD from PDs. In addition, there are higher plasma PINK1-Parkin levels and prominent diagnostic accuracy in A-synuclein (+) subjects than in A-synuclein (-) subjects. CONCLUSIONS: These results uncover that plasma MAPs (PINK1, Parkin, and PGAM5) may be potentially useful diagnostic biomarkers for PD diagnosis. Studies on larger cohorts would be required to test whether elevated plasma MAP levels are related to PD risk or prognosis.

4.
Front Aging Neurosci ; 14: 1022274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389083

RESUMO

Background: We aimed to examine whether plasma-derived phosphoglycerate mutase 5 (PGAM5) can be a biomarker for Parkinson's disease (PD) diagnosis as well as its association with the severity of motor/non-motor manifestations of PD. Methods: We enrolled 124 patients with PD (PD group) and 50 healthy controls (HC group). We measured plasma PGAM5 levels using a quantitative sandwich enzyme immunoassay. Patients with PD underwent baseline evaluations using the Unified Parkinson's Disease Rating Scale (UPDRS), while participants in both groups were evaluated using scales for non-motor manifestations. Receiver operating characteristic curves were used to evaluate the predictive utility of plasma PAMG5 alone and combined with other factors. Results: Plasma PAMG5 levels were significantly higher in the PD group; the area under the curve (AUC) of plasma PGAM5 levels alone was 0.76. The AUC values for elderly participants and patients without hypertension were 0.78 and that for was 0.79. Notably, plasma PGAM5 levels combined with plasma oligomeric α-synuclein (α-syn) and the score of the REM sleep behavior disorder questionnaire-Hong Kong (RBDQ-HK) showed AUC values of 0.80 and 0.82. Multivariable logistic analysis revealed that plasma PAMG5 levels were independently associated with PD (odds ratio,1.875 [95% confidence interval 1.206-2.916], p = 0.005) but not the severity of motor/non-motor manifestations of PD. Conclusion: Plasma PGAM5 is an independent biomarker for PD, especially among elderly patients (age > 60 years) and patients without hypertension. The predictive utility of PGAM5 was improved when combined with plasma oligomeric α-syn or the RBDQ-HK score.

5.
Front Aging Neurosci ; 14: 869797, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645787

RESUMO

Introduction: To explore the combined diagnostic value of plasma Lewy body-associated proteins (p-Asyn at ser129, total α-syn, and oligomeric α-syn) for the diagnosis of PD versus healthy controls (HCs) and other PD syndromes (PDs), as well as clinical characteristics prediction. Methods: This study included 145 participants: 79 patients with PD, 24 patients with PDs, and 42 HCs. A panel of plasma levels of p-Asyn, total α-syn, and oligomeric α-syn was measured by enzyme-linked immunosorbent assay (ELISA). The primary outcome was the discriminative accuracy of the combined three plasma biomarkers for PD. Results: The mean age was 65.43 (SD, 7.467) in the control group, 64.49 (SD, 8.224) in participants with PD, and 69.25 (SD, 7.952) in PDs. The plasma Lewy body-associated protein levels were significantly higher in patients with PD than in age-matched HCs, However, there was no difference in patients with PD and PDs. Of note, a combination of plasma p-Asyn, total α-syn, and oligomeric α-syn was a better biomarker for discriminating PD from HCs, with an AUC of 0.8552 (p < 0.0001, 95%CI, 0.7635-0.9409), which was significantly higher than plasma p-Asyn (ΔAUC, 0.1797), total α-syn (ΔAUC, 0.0891) and oligomeric α-syn (ΔAUC, 0.1592) alone. Meanwhile, Lewy body-associated proteins had no connections between different motor stages and dementia performances. Conclusion: Our results suggested that plasma Lewy body-associated proteins, may serve as a non-invasive biomarker to aid the diagnosis of PD from HCs. In addition, increased plasma Lewy body-associated proteins were not associated with the progression of motor and non-motor symptoms.

6.
Neurochem Int ; 155: 105297, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35122926

RESUMO

Curcumin, a polyphenolic compound extracted from curcuma longa, acts as a nontoxic matter with anti-oxidant and anti-inflammatory effects as well as antiproliferative activities. Here, our research aimed to explore the neuroprotective effects of curcumin both in the 6-hydroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD) in vivo and 6-OHDA-lesioned PC12 cells in vitro. In vitro, 6-OHDA caused a distinct decrease in cell viability of PC12 cells (150 µM). With the incubation of curcumin (1 µM), 6-OHDA-induced apoptosis was suppressed, increasing the autophagy markers (LC3-II/LC3-I, Beclin-1) and inhibiting phosphor-AKT/AKT, phosphor-mTOR/mTOR. In vivo, curcumin (50 mg/kg) reduced the accumulation of a-synuclein and led to higher parkinsonian disability scores in 6-OHDA-lesioned PD rats, contributing to induction of autophagy through inhibiting AKT/mTOR signal pathway. Moreover, treatment with autophagy inhibitors, such as 3-MA and chloroquine, abolished the neuroprotective effects of curcumin as evidence by compromised autophagy and declined motor behavior in PD rats. In conclusion, the present study demonstrated that curcumin repressed PC12 cell death in vitro and improved parkinsonian disability scores in vivo by inhibiting AKT/mTOR signaling pathway which mediated by autophagy, indicating a potential value of curcumin in the therapeutic intervention of Parkinson's disease.


Assuntos
Curcumina , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Autofagia , Curcumina/farmacologia , Curcumina/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Oxidopamina/toxicidade , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Ratos
7.
Front Cell Dev Biol ; 9: 668491, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34414179

RESUMO

Mitochondria in neurons generate adenosine triphosphate (ATP) to provide the necessary energy required for constant activity. Nicotinamide adenine dinucleotide (NAD+) is a vital intermediate metabolite involved in cellular bioenergetics, ATP production, mitochondrial homeostasis, and adaptive stress responses. Exploration of the biological functions of NAD+ has been gaining momentum, providing many crucial insights into the pathophysiology of age-associated functional decline and diseases, such as Alzheimer's disease (AD). Here, we systematically review the key roles of NAD+ precursors and related metabolites in AD models and show how NAD+ affects the pathological hallmarks of AD and the potential mechanisms of action. Advances in understanding the molecular roles of NAD+-based neuronal resilience will result in novel approaches for the treatment of AD and set the stage for determining whether the results of exciting preclinical trials can be translated into the clinic to improve AD patients' phenotypes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...