Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 21(5): 2394-2405, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38647653

RESUMO

Doxorubicin (DOX) is one of the most commonly used anticancer drugs; however, its clinical application is greatly limited due to its toxicity and chemotherapy resistance. The delivery of DOX by liposomes (Lipos) can improve the blood circulation time in vivo and reduce toxic side effects, but the drug's accumulation in the tumor is often insufficient for effective treatment. In this study, we present a calcium cross-linked liposome gel for the encapsulation of DOX, demonstrating its superior long-term release capabilities compared to conventional Lipos. By leveraging this enhanced long-term release, we can enhance drug accumulation within tumors, ultimately leading to improved antitumor efficacy. Lipos were prepared using the thin-film dispersion method in this study. We utilized the ion-responsiveness of glutathione-gelatin (GSH-GG) to form the gel outside the Lipos and named the nanoparticles coated with GSH-GG on the outside of Lipos as Lipos@GSH-GG. The average size of Lipos@GSH-GG was around 342.9 nm, with a negative charge of -25.6 mV. The in vitro experiments revealed that Lipos@GSH-GG exhibited excellent biocompatibility and slower drug release compared to conventional Lipos. Further analysis of cellular uptake and cytotoxicity demonstrated that Lipos@GSH-GG loading DOX (DOX&Lipos@GSH-GG) exhibited superior long-term release effects and lower toxic side effects compared to Lipos loading DOX (DOX&Lipos). Additionally, the findings regarding the long-term release effect in vivo and the tumor accumulation within tumor-bearing mice of Lipos@GSH-GG suggested that, compared to Lipos, it demonstrated superior long-term release capabilities and achieved greater drug accumulation within tumors. In vivo antitumor efficacy experiments showed that DOX&Lipos@GSH-GG demonstrated superior antitumor efficacy to DOX&Lipos. Our study highlights Lipos@GSH-GG as a promising nanocarrier with the potential to enhance efficacy and safety by means of long-term release effects and may offer an alternative approach for effective antitumor therapy in the future.


Assuntos
Cálcio , Doxorrubicina , Liberação Controlada de Fármacos , Glutationa , Lipossomos , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Animais , Camundongos , Lipossomos/química , Humanos , Cálcio/química , Cálcio/metabolismo , Glutationa/química , Feminino , Géis/química , Gelatina/química , Camundongos Nus , Nanopartículas/química , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Reagentes de Ligações Cruzadas/química , Sistemas de Liberação de Medicamentos/métodos
2.
Biomed Pharmacother ; 171: 116175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38266620

RESUMO

Bacterial infections are a significant global health concern, particularly in the context of skin infections and chronic wounds, which was further exacerbated by the emerging of antibiotic resistance. Therefore, there are urgent needs to develop alternative antibacterial strategies without inducing significant resistance. Photothermal therapy (PTT) is a promising alternative approach but usually faces limitations such as the need for stable and environmental-friendly PTT agents and ensuring biocompatibility with living tissues, necessitating ongoing research for its clinical advancement. Herein, in this study, with the aim to develop a green synthesized PTT agent for photothermal enhanced antibacterial and wound healing, we proposed a facile one-pot method to prepare epigallocatechin gallate-ferric (EGCG-Fe) complex nanoparticles. The obtained nanoparticles showed improved good size distribution and stability with high reproducibility. More importantly, EGCG-Fe complex nanoparticles have additional photothermal conversion ability which can give photothermal enhanced antibacterial effect on various pathogens, including Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) strains. EGCG-Fe complex nanoparticles also showed powerful biofilm prevention and destruction effects with promoted antibacterial and wound healing on mice model. In conclusion, EGCG-Fe complex nanoparticles can be a robust green material with effective and novel light controllable antibacterial properties for photothermal enhanced antibacterial and wound healing applications.


Assuntos
Catequina/análogos & derivados , Escherichia coli , Nanopartículas , Animais , Camundongos , Reprodutibilidade dos Testes , Staphylococcus aureus , Ferro , Antibacterianos , Eletrólitos , Cicatrização
3.
Mol Pharm ; 20(11): 5383-5395, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37747899

RESUMO

Amifostine (AMF, also known as WR-2721) is the only approved broad-spectrum small-molecule radiation protection agent that can combat hematopoietic damage caused by ionizing radiation and is used as an antitumor adjuvant and cell protector in cancer chemotherapy and radiotherapy. Amifostine is usually injected intravenously before chemotherapy or radiotherapy and has been used in the treatment of head and neck cancer. However, the inconvenient intravenous administration and its toxic side effects such as hypotension have severely limited its further application in clinic. In order to reduce the toxic and side effects, scientists are trying to develop a variety of drug administration methods and are devoted to developing a wide application of amifostine in radiation protection. This paper reviews the research progress of amifostine for radiation protection in recent years, discusses its mechanism of action, clinical application, and other aspects, with focus on summarizing the most widely studied amifostine injection administration and drug delivery systems, and explored the correlation between various administrations and drug efficacies.


Assuntos
Amifostina , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Proteção Radiológica , Protetores contra Radiação , Humanos , Amifostina/farmacologia , Amifostina/uso terapêutico , Protetores contra Radiação/farmacologia , Administração Intravenosa , Adjuvantes Imunológicos
4.
Life Sci ; 329: 121930, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454755

RESUMO

AIMS: Bacterial infection is a significant factor contributing to the deterioration of wounds, and the misuse of antibiotics has exacerbated bacterial resistance. Therefore, there is an urgent need to develop a novel antibacterial strategy to replace conventional therapies. This study aims to construct a self-activated cascade reaction nanozyme, f-FeNC@GOx, which triggers a cascade reaction in the presence of glucose. This cascade reaction generates highly toxic hydroxyl radicals (OH), thereby achieving the goal of eliminating bacteria and promoting wound healing. MATERIAL AND METHODS: In vitro antibacterial experiments, bacterial spread plate method, Live/Dead staining, and crystal violet staining were conducted to analyze the antibacterial ability and mechanism of f-FeNC@GOx. In vivo experiments, a mouse wound model was established, and H&E and Masson staining of wound tissues were performed to assess the antibacterial activity of the f-FeNC@GOx in vivo. KEY FINDINGS: The in vivo and in vitro experiments confirmed that f-FeNC@GOx exhibited significant antibacterial effect against both Staphylococcus aureus and Escherichia coli in the presence of glucose. Furthermore, it showed optimal wound healing performance in the wound models. SIGNIFICANCE: These findings suggested that f-FeNC@GOx was a novel and effective antibacterial nanomaterial, which provided a promising antibacterial strategy using nanoenzyme based cascade reaction.


Assuntos
Antibacterianos , Nanoestruturas , Animais , Camundongos , Antibacterianos/farmacologia , Modelos Animais de Doenças , Escherichia coli , Glucose , Cicatrização
5.
ACS Biomater Sci Eng ; 8(11): 5008-5017, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36300784

RESUMO

Worldwide antibiotic abuse accelerates the evolution of drug-resistant super bacteria, which goes against the war toward bacterial infection. Antibiotic-loaded nanoparticles as a typical form of nanomedicine hold great promise in combating bacterial infection, which requires the development of a suitable carrier. Tannic acid (TA) showed an inhibition effect on both Gram-positive and -negative strains; however, there are no reports on the development of antibacterial nanoformulations based on TA itself. We could get PTA NPs using a one-pot method, and their size and ζ-potential were characterized. Herein, we carefully tuned the polymerization of TA to give well-dispersed polytannic acid nanoparticles (PTA NPs) with a size of 100 nm. Moreover, our results demonstrated that PTA NPs showed enhanced antibacterial effects on both Gram-positive and -negative strains as compared to free TA. Especially, PTA NPs can preferably accelerate the healing of Staphylococcus-infected wounds. Based on its structure, we suggested that PTA NPs may have a similar property to polydopamine nanoparticles to offer high drug loading for potential combination therapy for extended application in bacterial infection management.


Assuntos
Infecções Bacterianas , Nanopartículas , Humanos , Taninos/farmacologia , Taninos/uso terapêutico , Taninos/química , Polimerização , Infecções Bacterianas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Nanopartículas/química , Bactérias
6.
Pharm Res ; 39(10): 2475-2486, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36008737

RESUMO

Gene therapy is one of the most widely studied treatments and has the potential to treat a variety of intractable diseases. The skin's limited permeability, as the body's initial protective barrier, drastically inhibits the delivery effect of gene medicine. Given the potential adverse effects and physicochemical features of the medications, improving generic drug penetration into the skin barrier and achieving an effective level of target tissues remains a challenge. Microneedles have made tremendous improvements in aided gene transfer and medication delivery as a unique method. Microneedles offer the advantage of being minimally invasive and painless, as well as the ability to distribute gene medicines straight through the stratum corneum. Microneedles have been used to penetrate skin tissue with various nucleic acids and medicines in recent years, allowing for a wide range of applications in the treatment of skin ailments. This review focuses on skin-related disorders and immunity, and it primarily discusses the progress of microneedle transdermal gene therapy in recent years. It also complements the current major vectors and related microneedle gene therapy applications.


Assuntos
Medicamentos Genéricos , Ácidos Nucleicos , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos , Terapia Genética/métodos , Microinjeções/métodos , Agulhas/efeitos adversos , Preparações Farmacêuticas , Pele
7.
Gels ; 8(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36005109

RESUMO

BACKGROUND: Promising cancer chemotherapy requires the development of suitable drug delivery systems (DDSs). Previous research has indicated that a hydrogel is a powerful DDS for tumor therapy and holds great potential to offer a feasible method for cancer management. METHODS: In this study, glutathione-gellan gum conjugate (GSH-GG) was synthesized through chemical reaction. Doxorubicin hydrochloride (DOX) was loaded into GSH-GG to accomplish DOX-loaded GSH-GG. The properties, injectability, drug release, and in vitro and in vivo anticancer effects of DOX-loaded GSH-GG were tested. RESULTS: DOX-loaded GSH-GG showed a temperature-ion dual responsive gelling property with good viscosity, strength, and injectability at an optimized gel concentration of 1.5%. In addition, lower drug release was found under acidic conditions, offering beneficial long-acting drug release in the tumor microenvironment. DOX-loaded GSH-GG presented selective action by exerting substantially higher cytotoxicity on cancer cells (4T1) than on normal epithelial cells (L929), signifying the potential of complete inhibition of tumor progression, without affecting the health quality of the subjects. CONCLUSIONS: GSH-GG can be applied as a responsive gelling material for delivering DOX for promising cancer therapy.

8.
Int J Biol Macromol ; 217: 55-65, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35817243

RESUMO

Infection-induced chronic wounds cause prolonged pains, a high risk of amputation, and even increased mortality in immunocompromised patients. Here we report an antibacterial microneedle (MN) patch, which features high degradability in biological fluids and gelatinase-responsive release of an antibacterial photothermal peptide AMP-Cypate. We first synthesize gelatin nanoparticles (GNPs) and then conjugate the AMP-Cypate to afford composite AMP-Cypate@GNPs. The proteinaceous nanoparticles can responsively release AMP-Cypate in the presence of gelatinase, an enzyme secreted specifically by Staphylococcus aureus (S. aureus). AMP-Cypate@GNPs were then deposited in the tips of MNs fabricated by PVP and recombinant human type III collagen (Col III) to devise the antibacterial MN/AMP-Cypate@GNP patches. When applied to the infection site, MNs break through the epidermis and the stratum corneum, dissolve in the infected dermis, reach the bacterial colony or biofilm, release AMP-Cypate@GNPs, and exert a gelatinase-responsive photothermal therapy under near-infrared (NIR) irradiation to kill the pathogen S. aureus. In a rat model of staphylococcal infection-induced chronic wounds mimicking the condition of diabetic foot ulcer, the antibacterial MN/AMP-Cypate@GNP patches eradiated the bacterial infection and resulted in complete healing of the wounds, proving its potential application in the treatment of chronic wound infections and diabetic foot ulcers.


Assuntos
Pé Diabético , Nanopartículas , Infecções Estafilocócicas , Animais , Humanos , Ratos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Doença Crônica , Gelatina , Gelatinases , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus
9.
Gels ; 8(5)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35621613

RESUMO

As a highly absorbent and hydrophobic material with a three-dimensional network structure, hydrogels are widely used in biomedical fields for their excellent biocompatibility, low immunogenicity, adjustable physicochemical properties, ability to encapsulate a variety of drugs, controllability, and degradability. Hydrogels can be used not only for wound dressings and tissue repair, but also as drug carriers for the treatment of tumors. As multifunctional hydrogels are the focus for many researchers, this review focuses on hydrogels for antitumor therapy, hydrogels for antibacterial therapy, and hydrogels for co-use in tumor therapy and bacterial infection. We highlighted the advantages and representative applications of hydrogels in these fields and also outlined the shortages and future orientations of this useful tool, which might give inspirations for future studies.

10.
J Biomed Nanotechnol ; 18(2): 571-580, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35484743

RESUMO

Intranasal administration, which can bypass the blood-brain barrier (BBB), is widely recognized as a promising strategy for high-efficiency drug delivery to the brain. Herein, for the purpose of effectively delivering drugs to the brain via intranasal administration, glutathione (GSH)-modified gellan gum (GSH-GG) with ion/temperature dual responsive properties was synthesized and encapsulated on galanthamine hydrobromide (GH)-loaded liposomes (GH-Lipo) for effective GH delivery to the brain (GH-Lipo@GSH-GG). Our results demonstrated that GSH-GG greatly decreased the gelation temperature of GG from 44.0 °C to 22.1 °C without compromising its ion responsiveness. Moreover, GSH-GG had a good protection ability for GH-loaded liposomes without affecting its drug release. Most importantly, the finally obtained GH-Lipo@GSHGG showed acceptable targeted delivery of GH to the brain upon in vivo administration. Therefore, this formulation can be employed as a potential delivery system in nasal-to-brain delivery.


Assuntos
Hidrogéis , Lipossomos , Encéfalo , Glutationa , Polissacarídeos Bacterianos , Temperatura
11.
J Biomed Nanotechnol ; 18(2): 435-445, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35484748

RESUMO

Gene vectors with high biocompatibility and transfection efficiency are critical for successful gene therapy. PEI 25K (Polyethyleneimine 25K) is a common polymeric gene vector that has been employed as a positive control material in gene transfection studies due to its good performance in endosome escape. PEI 25K's indegradability and abundance of positive charges, on the other hand, cause toxicity in cells, limiting its use. In this study, we developed the PEI-ER non-viral vector by adding an endoplasmic reticulum (ER) targeting ligand to low molecular weight PEI 1.8K. These small molecule modifications dramatically improved PEI transfection efficiency while barely interfering with compatibility. PEI-ER/DNA complexes were discovered to enter the cell via caveolin-mediated endocytosis, avoiding destruction in the endosome. We believe that this little chemical alteration is a simple solution to enhance the efficacy of cationic polymer vectors in gene transport, and it has a lot of medicinal applications.


Assuntos
Polietilenoimina , Polímeros , DNA/química , DNA/genética , Vetores Genéticos/genética , Polietilenoimina/química , Transfecção
12.
Mol Pharm ; 19(5): 1647-1655, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35349292

RESUMO

One of the most significant barriers to the clinical transformation of nanomedicines is low drug distribution in solid tumors due to quick clearance of nanomedicine after injection. Studies have revealed that the distribution of nanomedicine in tumor sites can be considerably improved when the number of nanoparticles supplied in a short period surpasses the threshold. Most routinely employed nanomaterials have dose-related safety concerns. To resolve this problem, we use highly biocompatible albumin to construct blank nanoparticles and doxorubicin loading nanoparticles. Under the guidance of the threshold theory, when the quantity of drug loading nanoparticles is constant, the drug delivery effectiveness improves with the addition of blank nanoparticles. This enhanced impact was verified both in vitro and in vivo. The area under the curve of the high dose group (19.5 × 1011) is 2.5 times higher than that of the low dose group (6.5 × 1011). In addition, the drug distribution of the high dose group at the tumor site was also improved by 1.5 times compared with the low dose group. The results of histopathological sections also showed that the administration of excess blank nanoparticles within 24 h has no damage to the animals. This study contributes to the clinical transition of nanomedicine by providing fresh ideas for anticancer nanomedicine research.


Assuntos
Nanopartículas , Neoplasias , Animais , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Nanomedicina , Neoplasias/tratamento farmacológico , Neoplasias/patologia
13.
Mol Pharm ; 19(3): 819-830, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35170976

RESUMO

The emergence of superbacteria as well as the drug resistance of the current bacteria gives rise to worry regarding a bacterial pandemic and also calls for the development of novel ways to combat the bacteria. Here in this article, we demonstrate that mild hyperthermia induced by hollow mesoporous Prussian blue nanoparticles (HMPBNPs) in alliance with a low concentration of hydrogen peroxide (H2O2) shows a powerful inhibition effect on bacteria. Our results demonstrate that this therapeutic regime could realize almost full growth inhibition of both Gram-positive (Staphylococcus aureus, S. aureus) and -negative bacteria (Escherichia coli, E. coli), as well as potent inhibition/elimination of the S. aureus biofilm. The wound healing results indicate that combination regime of the antibacterial system could be conveniently used for wound disinfection in vivo and could promote wound healing. To our limited knowledge, this is one of the few pioneer works to apply mild hyperthermia for the combat of bacteria, which provides a novel strategy to inspire future studies.


Assuntos
Hipertermia Induzida , Nanopartículas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Escherichia coli , Ferrocianetos , Peróxido de Hidrogênio/farmacologia , Staphylococcus aureus
14.
Biomater Sci ; 10(3): 654-664, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34928277

RESUMO

Bacterial infection of wounds delays the healing process, increases the risk of chronic trauma associated with pain and complications, and offers a breeding ground for drug-resistant bacteria. A rapid and effective eradication of the bacterial species in the wound area is thus important. Herein, we designed a phototherapeutic antibacterial platform based on peptides and copper sulfide nanodots (CuS NDs) for multi-mechanistic eradication of bacteria colonized on the wound surface. The antimicrobial peptide weaves into a network in the form of a hydrogel, which supports CuS NDs to generate heat and produce reactive oxygen species (ROS) under the irradiation of near-infrared light (NIR). The heat and ROS generated in situ act as non-contact-based antibacterial factors and together with contact-based antimicrobial peptides cause irreversible membrane destruction, cell content damage, and thermal ablation of the bacteria. Lastly, nanodot-doped peptide hydrogels combined with collagen showed complete bacterial elimination and significantly accelerated wound healing in a splint-fixed mouse infection model.


Assuntos
Hidrogéis , Fototerapia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Camundongos , Peptídeos , Cicatrização
15.
Biophys Chem ; 281: 106696, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34954553

RESUMO

The detection of protease activity in the body plays a significant role in the early diagnosis of diseases. However, enzymes inevitably come into contact with various complex biological fluids in the body during the flow, which greatly increases the detection difficulty. Therefore, protease detection in vivo has great challenges. Herein, we report a new assay for detecting protease using capillary electrophoresis inside a capillary with semicircular bends. We first designed a peptide substrate, and then the peptide was self-assembled with quantum dots to form a QDs-peptide substrate. The capillary was bent to semicircular-shaped turns and served as a micro-reactor to allow protease and substrate react in it. Due to the different electrophoretic velocity, the protease and the substrate were mixed inside the bent capillary with sequential injections and the cleavage of the substrate can be detected using capillary electrophoresis combined with Förster resonance energy transfer technology. This novel assay will greatly expand the detection of enzyme activity in vivo.


Assuntos
Peptídeo Hidrolases , Pontos Quânticos , Eletroforese Capilar/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Peptídeos
16.
Technol Cancer Res Treat ; 20: 15330338211036539, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350798

RESUMO

Bifunctional magnetic/fluorescent core-shell silica nanospheres (MNPs) encapsulated with the magnetic Fe3O4 core and a derivate of 8-amimoquinoline (N-(quinolin-8-yl)-2-(3-(triethoxysilyl) propylamino) acetamide) (QTEPA) into the shell were synthesized. These functional MNPs were prepared with a modified stöber method and the formed Fe3O4@SiO2-QTEPA core-shell nanocomposites are biocompatible, water-dispersible, and stable. These prepared nanoparticles were characterized by X-ray power diffraction (XRD), transmission electron microscopy (TEM), thermoelectric plasma Quad II inductively coupled plasma mass spectrometry (ICP-MS), superconducting quantum interference device (SQUID), TG/DTA thermal analyzer (TGA) and Fourier transform infrared spectroscopy (FTIR). Further application of the nanoparticles in detecting Zn2+ was confirmed by the fluorescence experiment: the nanosensor shows high selectivity and sensitivity to Zn2+ with a 22-fold fluorescence emission enhancement in the presence of 10 µM Zn2+. Moreover, the transverse relaxivity measurements show that the core-shell MNPs have T2 relaxivity (r2) of 155.05 mM-1 S-1 based on Fe concentration on the 3.0 T scanner, suggesting that the compound can be used as a negative contrast agent for MRI. Further in vivo experiments showed that these MNPs could be used as MRI contrast agent. Therefore, the new nanosensor provides the dual modality of magnetic resonance imaging and optical imaging.


Assuntos
Meios de Contraste , Nanopartículas Magnéticas de Óxido de Ferro/química , Imageamento por Ressonância Magnética , Imagem Óptica , Zinco/análise , Aminoquinolinas , Animais , Materiais Biocompatíveis/química , Fluorescência , Humanos , Fígado/diagnóstico por imagem , Células MCF-7 , Espectrometria de Massas , Camundongos , Microscopia Eletrônica de Transmissão , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
17.
Macromol Rapid Commun ; 42(19): e2100264, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34347315

RESUMO

Dual intramolecular FRET polymers are synthesized via Suzuki coupling and their luminescence characteristics from aggregation-caused quenching (ACQ) to aggregation-induced emission (AIE) is modulated conveniently by adjusting the charged ratios. The finally obtained AIE polymer is further employed to construct doxorubicin loaded nanoparticles as a promising theranostics platform for cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Polímeros , Medicina de Precisão , Nanomedicina Teranóstica
18.
Biomater Sci ; 9(17): 5965-5976, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34318805

RESUMO

Reactive oxygen species (ROS) are the weapons of neutrophiles against bacterial pathogens, and also the central effectors in reactive oxygen therapy for skin and soft tissue infection. Nanozymes that spontaneously generate ROS under physiological conditions are new antibacterials that hold promise towards multidrug resistant pathogens. The clinical use of the nanozymes is however limited by their low biocompatibility and toxicity in vivo. Here, we develop an oleic acid (OA) nanoemulsion template method for the one-pot synthesis of OA-manganese dioxide (MnO2) nanozyme. The OA-MnO2 nanozyme showed high stability and biocompatibility under physiological conditions with marked oxidase-like activity. The ROS generated by the OA-MnO2 nanozyme effectively kill the Gram-positive Staphylococcus aureus and the Gram-negative Escherichia coli strains. Moreover, the OA-MnO2 nanozyme shows promising abilities to prevent and destruct biofilm formation by Staphylococcus aureus, and result in superior in vivo antibacterial performance as compared to vancomycin. The reactive oxygen therapy based on OA-MnO2 nanozyme cures the infected skin and promotes wound healing in mice, manifesting its potential use in skin and soft tissue infection.


Assuntos
Compostos de Manganês , Infecções Estafilocócicas , Animais , Antibacterianos , Camundongos , Óxidos , Oxigênio , Espécies Reativas de Oxigênio , Infecções Estafilocócicas/tratamento farmacológico , Cicatrização
19.
Biomater Sci ; 9(9): 3433-3444, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949360

RESUMO

Staphylococcus aureus (S. aureus) related staphylococcal infection is one of the most common types of hospital-acquired infections, which requires selective and effective treatment in clinical practice. Considering gelatinase as a characteristic feature of S. aureus, gelatinase-responsive release of the antibiotic reagent thereby can target the pathogenic S. aureus while sparing beneficial bacteria in the microflora. In this work, we design a hybrid antibacterial photodynamic peptide (APP, Ce6-GKRWWKWWRRPLGVRGC) based on the polycationic antimicrobial peptide GKRWWKWWRR by introducing a photosensitizer chlorin e6 (Ce6) at the N-terminus, a cysteine residue at the C-terminus, and a gelatinase cleavage site (PLGVRG) inserted between the C-terminal cysteine and the polycationic peptide. This multi-motif peptide assembles with gold nanoclusters (AuNc) via Au-thiol bonding and affords a gelatinase-responsive antibacterial photodynamic nanocomposite (GRAPN). In vitro results show that the gelatinase secreted by S. aureus can cleave and release APP from AuNc, thereby resulting in preferential killing of S. aureus over E. coli. In a mouse model of staphylococcal skin wound infection, by integrating gelatinase-responsive drug release and the synergistic effect of a photodynamic agent and APP, GRAPN exhibits a marked photodynamic antibacterial activity, effectively eradicates S. aureus infection, and promotes rapid healing of the infected wounds.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Antibacterianos/farmacologia , Escherichia coli , Gelatinases , Camundongos , Peptídeos , Infecções Estafilocócicas/tratamento farmacológico
20.
Talanta ; 228: 122225, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33773730

RESUMO

A strategy based on fluorescence coupled capillary electrophoresis (CE-FL) was developed for analyzing tetrahedron DNA (TD) and TD-doxorubicin (DOX) conjugate. Capillary gel electrophoresis exhibited desirable performance for separating TD and DNA strands. Under the optimized conditions, satisfactory repeatability concerning run-to-run and interday repeatability was obtained, and relative standard deviation value of resolution (n = 6) was 0.64%. Furthermore, the combination of CE and fluorescence detection provided a sensitive platform for quantifying TD concentration and calculating the damage degree of TD. The electrophoretograms indicated that CE-FL was a suitable TD assay method with high specificity and sensitivity. In addition, the application of CE-FL for TD fluorescence resonance energy transfer (FRET) research was also explored. Two types of DNA strands were utilized to interfere the formation of TD. The impact of partially complementary chain and completely complementary chain on FRET signal was explored, and the influence mechanism was discussed. After applying CE-FL for characterizing TD, we also combine CE and FRET to analyze TD-DOX conjugate. CE presented a favourable technique to monitor DOX loading and releasing processes. These noteworthy results offered a stepping stone for DNA nanomaterials assay by using CE-FL.


Assuntos
Eletroforese Capilar , Nanoestruturas , Antígenos , DNA/genética , Fluorescência , Transferência Ressonante de Energia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...