Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 23: 2606-2614, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39006920

RESUMO

Cathepsin L (CTSL) is a promising therapeutic target for metabolic disorders. Current pharmacological interventions targeting CTSL have demonstrated potential in reducing body weight gain, serum insulin levels, and improving glucose tolerance. However, the clinical application of CTSL inhibitors remains limited. In this study, we used a combination of artificial intelligence and experimental methods to identify new CTSL inhibitors from natural products. Through a robust deep learning model and molecular docking, we screened 150 molecules from natural products for experimental validation. At a concentration of 100 µM, we found that 36 of them exhibited more than 50 % inhibition of CTSL. Notably, 13 molecules displayed over 90 % inhibition and exhibiting concentration-dependent effects. The molecular dynamics simulation on the two most potent inhibitors, Plumbagin and Beta-Lapachone, demonstrated stable interaction at the CTSL active site. Enzyme kinetics studies have shown that these inhibitors exert an uncompetitive inhibitory effect on CTSL. In conclusion, our research identifies Plumbagin and Beta-Lapachone as potential CTSL inhibitors, offering promising candidates for the treatment of metabolic disorders and illustrating the effectiveness of artificial intelligence in drug discovery.

2.
Int J Ophthalmol ; 17(6): 1018-1027, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895677

RESUMO

AIM: To explore the effect of epidermal growth factor receptor (EGFR) inhibition by erlotinib and EGFR siRNA on epidermal growth factor (EGF)-induced activation of retinal pigment epithelium (RPE) cells. METHODS: Human RPE cell line (ARPE-19 cells) was activated by 100 ng/mL EGF. Erlotinib and EGFR siRNA were used to intervene EGF treatment. Cellular viability, proliferation, and migration were detected by methyl thiazolyl tetrazolium (MTT) assay, bromodeoxyuridine (BrdU) staining assay and wound healing assay, respectively. EGFR/protein kinase B (AKT) pathway proteins and N-cadherin, α-smooth muscle actin (α-SMA), and vimentin were tested by Western blot assay. EGFR was also determined by immunofluorescence staining. RESULTS: EGF treatment for 24h induced a significant increase of ARPE-19 cells' viability, proliferation and migration, phosphorylation of EGFR/AKT proteins, and decreased total EGFR expression. Erlotinib suppressed ARPE-19 cells' viability, proliferation and migration through down regulating total EGFR and AKT protein expressions. Erlotinib also inhibited EGF-induced an increase of proliferative and migrative ability in ARPE-19 cells and clearly suppressed EGF-induced EGFR/AKT proteins phosphorylation and decreased expression of N-cadherin, α-SMA, and vimentin proteins. Similarly, EGFR inhibition by EGFR siRNA significantly affected EGF-induced an increase of cell proliferation, viability, and migration, phosphorylation of EGFR/AKT proteins, and up-regulation of N-cadherin, α-SMA, and vimentin proteins. CONCLUSION: Erlotinib and EGFR-knockdown suppress EGF-induced cell viability, proliferation, and migration via EGFR/AKT pathway in RPE cells. EGFR inhibition may be a possible therapeutic approach for proliferative vitreoretinopathy (PVR).

3.
Int J Ophthalmol ; 17(5): 806-814, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766346

RESUMO

AIM: To explore the effects of hepatocyte growth factor (HGF) on retinal pigment epithelium (RPE) cell behaviors. METHODS: The human adult retinal pigment epithelial cell line-19 (ARPE-19) were treated by HGF or mesenchymal-epithelial transition factor (MET) inhibitor SU11274 in vitro. Cell viability was detected by a Cell Counting Kit-8 assay. Cell proliferation and motility was detected by a bromodeoxyuridine incorporation assay and a wound healing assay, respectively. The expression levels of MET, phosphorylated MET, protein kinase B (AKT), and phosphorylated AKT proteins were determined by Western blot assay. The MET and phosphorylated MET proteins were also determined by immunofluorescence assay. RESULTS: HGF increased ARPE-19 cells' viability, proliferation and migration, and induced an increase of phosphorylated MET and phosphorylated AKT proteins. SU11274 significantly reduced cell viability, proliferation, and migration and decreased the expression of MET and AKT proteins. SU11274 suppressed HGF-induced increase of viability, proliferation, and migration in ARPE-19 cells. Additionally, SU11274 also blocked HGF-induced phosphorylation of MET and AKT proteins. CONCLUSION: HGF enhances cellular viability, proliferation, and migration in RPE cells through the MET/AKT signaling pathway, whereas this enhancement is suppressed by the MET inhibitor SU11274. HGF-induced MET/AKT signaling might be a vital contributor of RPE cells survival.

4.
PLoS One ; 6(2): e14652, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21556333

RESUMO

BACKGROUND: Chemokine (C-C motif) ligand 2 CCL2/MCP-1 is among the key signaling molecules of innate immunity; in particular, it is involved in recruitment of mononuclear and other cells in response to infection, including tuberculosis (TB) and is essential for granuloma formation. METHODOLOGY/PRINCIPAL FINDINGS: We identified a tag SNP for the CCL2/MCP-1 gene (rs4586 C/T). In order to understand whether this SNP may serve to evaluate the contribution of the CCL2 gene to the expression of TB disease, we further analysed distribution of its alleles and genotypes in 301 TB cases versus 338 non-infected controls (all BCG vaccinated) representing a high-risk pediatric population of North China. In the male TB subgroup, the C allele was identified in a higher rate (P = 0.045), and, acting dominantly, was found to be a risk factor for clinical TB (P = 0.029). Homozygous TT genotype was significantly associated with lower CSF mononuclear leukocyte (ML) counts in patients with tuberculous meningitis (TBM) (P = 0.001). CONCLUSIONS/SIGNIFICANCE: The present study found an association of the CCL2 tag SNP rs4586 C allele and pediatric TB disease in males, suggesting that gender may affect the susceptibility to TB even in children. The association of homozygous TT genotype with decreased CSF mononuclear leukocyte (ML) count not only suggests a clinical significance of this SNP, but indicates its potential to assist in the clinical assessment of suspected TBM, where delay is critical and diagnosis is difficult.


Assuntos
Povo Asiático/etnologia , Povo Asiático/genética , Quimiocina CCL2/genética , Etnicidade/genética , Polimorfismo de Nucleotídeo Único/genética , Tuberculose Pulmonar/genética , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , China/etnologia , Feminino , Haplótipos/genética , Humanos , Desequilíbrio de Ligação/genética , Masculino , Fenótipo , Caracteres Sexuais , Tuberculose Meníngea/genética , Tuberculose Pulmonar/líquido cefalorraquidiano , Tuberculose Pulmonar/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...