Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(6): 141, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789698

RESUMO

KEY MESSAGE: Stable and novel QTLs that affect seed vigor under different storage durations were discovered, and BnaOLE4, located in the interval of cqSW-C2-3, increased seed vigor after aging. Seed vigor is an important trait in crop breeding; however, the underlying molecular regulatory mechanisms governing this trait in rapeseed remain largely unknown. In the present study, vigor-related traits were analyzed in seeds from a doubled haploid (DH) rapeseed (Brassica napus) population grown in 2 different environments using seeds stored for 7, 5, and 3 years under natural storage conditions. A total of 229 quantitative trait loci (QTLs) were identified and were found to explain 3.78%-17.22% of the phenotypic variance for seed vigor-related traits after aging. We further demonstrated that seed vigor-related traits were positively correlated with oil content (OC) but negatively correlated with unsaturated fatty acids (FAs). Some pleiotropic QTLs that collectively regulate OC, FAs, and seed vigor, such as uq.A8, uq.A3-2, uq.A9-2, and uq.C3-1, were identified. The transcriptomic results from extreme pools of DH lines with distinct seed vigor phenotypes during accelerated aging revealed that various biological pathways and metabolic processes (such as glutathione metabolism and reactive oxygen species) were involved in seed vigor. Through integration of QTL analysis and RNA-Seq, a regulatory network for the control of seed vigor was constructed. Importantly, a candidate (BnaOLE4) from cqSW-C2-3 was selected for functional analysis, and transgenic lines overexpressing BnaOLE4 showed increased seed vigor after artificial aging. Collectively, these results provide novel information on QTL and potential candidate genes for molecular breeding for improved seed storability.


Assuntos
Brassica napus , Fenótipo , Locos de Características Quantitativas , Sementes , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Brassica napus/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/genética , Mapeamento Cromossômico , Vigor Híbrido , Haploidia , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal
2.
Adv Mater ; 36(14): e2307805, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37750196

RESUMO

Peripheral nerve injury potentially destroys the quality of life by inducing functional movement disorders and sensory capacity loss, which results in severe disability and substantial psychological, social, and financial burdens. Autologous nerve grafting has been commonly used as treatment in the clinic; however, its rare donor availability limits its application. A series of artificial nerve guidance conduits (NGCs) with advanced architectures are also proposed to promote injured peripheral nerve regeneration, which is a complicated process from axon sprouting to targeted muscle reinnervation. Therefore, exploring the interactions between sophisticated NGC complexes and versatile cells during each process including axon sprouting, Schwann cell dedifferentiation, nerve myelination, and muscle reinnervation is necessary. This review highlights the contribution of functional NGCs and the influence of microscale biomaterial architecture on biological processes of nerve repair. Progressive NGCs with chemical molecule induction, heterogenous topographical morphology, electroactive, anisotropic assembly microstructure, and self-powered electroactive and magnetic-sensitive NGCs are also collected, and they are expected to be pioneering features in future multifunctional and effective NGCs.


Assuntos
Regeneração Tecidual Guiada , Traumatismos dos Nervos Periféricos , Humanos , Regeneração Tecidual Guiada/métodos , Qualidade de Vida , Traumatismos dos Nervos Periféricos/terapia , Materiais Biocompatíveis/farmacologia , Axônios , Regeneração Nervosa , Nervo Isquiático/fisiologia
3.
Int J Mol Sci ; 24(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38003428

RESUMO

Interspecific crosses that fuse the genomes of two different species may result in overall gene expression changes in the hybrid progeny, called 'transcriptome shock'. To better understand the expression pattern after genome merging during the early stages of allopolyploid formation, we performed RNA sequencing analysis on developing embryos of Brassica rapa, B. napus, and their synthesized allotriploid hybrids. Here, we show that the transcriptome shock occurs in the developing seeds of the hybrids. Of the homoeologous gene pairs, 17.1% exhibit expression bias, with an overall expression bias toward B. rapa. The expression level dominance also biases toward B. rapa, mainly induced by the expression change in homoeologous genes from B. napus. Functional enrichment analysis revealed significant differences in differentially expressed genes (DEGs) related to photosynthesis, hormone synthesis, and other pathways. Further study showed that significant changes in the expression levels of the key transcription factors (TFs) could regulate the overall interaction network in the developing embryo, which might be an essential cause of phenotype change. In conclusion, the present results have revealed the global changes in gene expression patterns in developing seeds of the hybrid between B. rapa and B. napus, and provided novel insights into the occurrence of transcriptome shock for harnessing heterosis.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica rapa/genética , Transcriptoma , Vigor Híbrido , Fenótipo
4.
Genome Res ; 33(5): 798-809, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37290935

RESUMO

The recently constructed mutant libraries of diploid crops by the CRISPR-Cas9 system have provided abundant resources for functional genomics and crop breeding. However, because of the genome complexity, it is a big challenge to accomplish large-scale targeted mutagenesis in polyploid plants. Here, we demonstrate the feasibility of using a pooled CRISPR library to achieve genome-scale targeted editing in an allotetraploid crop of Brassica napus A total of 18,414 sgRNAs were designed to target 10,480 genes of interest, and afterward, 1104 regenerated transgenic plants harboring 1088 sgRNAs were obtained. Editing interrogation results revealed that 93 of the 178 genes were identified as mutated, thus representing an editing efficiency of 52.2%. Furthermore, we have discovered that Cas9-mediated DNA cleavages tend to occur at all the target sites guided by the same individual sgRNA, a novel finding in polyploid plants. Finally, we show the strong capability of reverse genetic screening for various traits with the postgenotyped plants. Several genes, which might dominate the fatty acid profile and seed oil content and have yet to be reported, were unveiled from the forward genetic studies. Our research provides valuable resources for functional genomics, elite crop breeding, and a good reference for high-throughput targeted mutagenesis in other polyploid plants.


Assuntos
Brassica napus , Brassica napus/genética , Edição de Genes/métodos , Sistemas CRISPR-Cas , Melhoramento Vegetal , Mutagênese , Plantas Geneticamente Modificadas/genética , Poliploidia
5.
Front Chem ; 8: 489, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32596208

RESUMO

The most severe problem in bone regeneration is the defect in the interface. We prepared four types of implantation scaffolds of crosslinked gelatin (GE)/hydroxyapatite (HAp) to study the factors influencing interface interactions, they are film-crosslinked GE scaffold, gel-crosslinked GE scaffold, solid-crosslinked GE/HAp scaffold and gel-crosslinked GE/HAp scaffold. HAp could penetrate the entire GE matrix completely in four successive steps: physical preparation of a gel; chemical crosslinking; incubation in modified simulated body fluid (m-SBF) and freeze-drying. The penetrative nucleation and growth of HAp and the influencing factors in the GE matrix were investigated to ameliorate the interface interactions between organic and inorganic layers. During development of penetrative nucleation and growth, a tight connection was built between organic and inorganic layers, B-type carbonated HAp was formed after incubation with m-BSF, and the apatite content could be controlled. In summary, enhanced interface relies on not only the pre-seeded hydroxyapatite (HAp) as crystal nuclei but also the sufficient space for ions with high concentration to diffuse in.

6.
Talanta ; 215: 120918, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32312461

RESUMO

Human epidermal growth factor receptor 2 (HER2)-positive is a particularly aggressive type of the breast cancer. Because of the evidence has revealed that accurate HER2 status detection is crucial for prognosis and treatment strategy selection, great effort has been taken to develop assays for sensitive and accurate quantification of HER2. However, nonspecific amplification effect of most current assays limits the quantification accuracy of low abundance HER2. In the present work, we developed an LC-MS/MS-based quasi-targeted proteomics strategy coupled with hybridization chain reaction (HCR) for amplification of the HER2 protein signal. In the described strategy, the aptamer triggered the HCR system to undergo a cascade of hybridization events, with the two locked hairpins conjugated to the substrate peptide to form aptamer-HCR peptide probes. The membrane protein HER2 was recognized by probe and the signal was to be converted and then amplified into the mass response of the reporter peptide, which could be quantified using LC-MS/MS. The signal intensity was approximately five fold greater than that without signal amplification. Finally, the developed assay was applied for the quantitative analysis of HER2 in breast cell lines and monitor the dynamic change of HER2 in drug induced HER2 negative cells. The result demonstrated that combination of HCR signal amplification and mass spectrometry provides a novel approach for simple, accurate, and quantitative monitoring of low abundance protein.


Assuntos
Aptâmeros de Nucleotídeos/química , Hibridização de Ácido Nucleico , Proteômica , Receptor ErbB-2/análise , Calibragem , Feminino , Humanos , Células MCF-7 , Tamanho da Partícula , Controle de Qualidade , Propriedades de Superfície , Células Tumorais Cultivadas
7.
J Control Release ; 320: 337-346, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-31931048

RESUMO

BACKGROUND: Drug delivery systems based on electrospun fibers have been under development for many years. However, studies of controllable long-term drug release from electrospun membrane systems and the underlying release mechanisms have seldom been reported. METHODS: In this study, electrospun membrane drug delivery systems consisting of the antibiotic ciprofloxacin hydrochloride and FDA-approved polymers are fabricated. Different second-component polymers are introduced to change the properties of a poly(d,l-lactide-co-glycolide) (PLGA) matrix, thereby altering the drug release behavior. On the basis of observations of morphology, cumulative release profiles, and determinations of release duration, the drug release kinetics and critical characteristics influencing drug release behavior are discussed. RESULTS: It is found that the drug release profiles can be divided into three stages according to the rate of drug release. Stage I is controlled by fiber swelling and diffusion according to Fick's second law. Stage II is controlled by diffusion through a fused membrane structure, which results in very slow drug release. Stage III is controlled by polymer degradation and involves release of the remaining drug. CONCLUSIONS: The results of this study of release mechanisms should provide a basis for adjustments of drug release dosage and duration, thereby contributing to the development of drug delivery systems satisfying clinical requirements.


Assuntos
Ciprofloxacina , Polímeros , Difusão , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos
8.
Adv Clin Chem ; 91: 123-162, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31331487

RESUMO

HER2-positive breast cancer is a particularly aggressive type of breast cancer. Indication of HER2 positivity is essential for its treatment. In addition to a few FDA-approved methods such as immunohistochemical (IHC) detection of HER2 protein expression and in situ hybridization (ISH) assessment of HER2 gene amplification, several novel methods have been developed for HER2 testing in recent years. This chapter provides an overview of HER2 testing with emphasis on those new methods.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Predisposição Genética para Doença , Receptor ErbB-2/genética , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Feminino , Humanos
9.
Clin Chem ; 64(3): 526-535, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29142051

RESUMO

BACKGROUND: Human epidermal growth factor receptor 2 (HER2)-positive breast cancer is a particularly aggressive type of the disease. To date, much evidence has indicated that accurate HER2 status detection is crucial for prognosis and treatment strategy selection. Thus, bioanalytical techniques for early and accurate detection of HER2 have the potential to improve patient care. Currently, the widely used immunohistochemical staining normally has problems with reproducibility and lack of standardization, resulting in poor concordance between laboratories. Aptamers are a good alternative, but the extent of their use in quantitative analysis of HER2 is limited because of the lack of effective detection methods. METHODS: We developed a quasi-targeted proteomics assay and converted the HER2 signal into the mass response of reporter peptide by a combination of aptamer-peptide probe and LC-MS/MS. RESULTS: The selected aptamer-peptide probe consisted of aptamer HB5 and the substrate peptide GDKAVLGVDPFR that contained the reporter peptide AVLGVDPFR. After characterization of this newly synthesized probe (e.g., conjugation efficiency, stability, binding affinity, specificity, and digestion efficiency), probe binding and trypsin shaving conditions were optimized. The resulting limit of quantification for HER2 was 25 pmol/L. Then, the quasi-targeted proteomics assay was applied to determine the HER2 concentrations in the HER2-positive breast cancer cells BT474 and SK-BR-3, the HER2-negative breast cancer cells MDA-MB-231 and MCF-7, and 36 pairs of human breast primary tumors and adjacent normal tissue samples. The results were highly concordant with those obtained by immunohistochemistry with reflex testing by fluorescent in situ hybridization. CONCLUSIONS: Quasi-targeted proteomics can be a quantitative alternative for HER2 detection.


Assuntos
Aptâmeros de Peptídeos/química , Cromatografia Líquida/métodos , Receptor ErbB-2/análise , Espectrometria de Massas em Tandem/métodos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Calibragem , Linhagem Celular Tumoral , Feminino , Humanos , Proteômica , Receptor ErbB-2/química , Tripsina/química
10.
Theranostics ; 7(11): 2849-2862, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824720

RESUMO

The distorted and unique expression of microRNAs (miRNAs) in cancer makes them an attractive source of biomarker. There is much evidence indicating that a panel of miRNAs, termed "miRNA fingerprints", is more specific and informative than an individual miRNA as biomarker. Thus, multiplex assays for simultaneous quantification of multiple miRNAs could be more potent in clinical practice. However, current available assays normally require pre-enrichment, amplification and labeling steps, and most of them are semi-quantitative or lack of multiplexing capability. In this study, we developed a quasi-targeted proteomics assay for multiplexed miRNA quantification by a combination of DNA-peptide probes and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Specifically, the signal of target miRNAs (i.e., miR-21, miR-let7a, miR-200c, miR-125a and miR-15b) was converted into the mass response of reporter peptides by hybridization of miRNAs with DNA-peptide probes and subsequent tryptic digestion to release the peptides. After a careful optimization of conditions related to binding, conjugation, hybridization and multiple reaction monitoring (MRM) detection, the assay was validated for each miRNA and the limit of quantification (LOQ) for all the miRNAs can achieve 1 pM. Moreover, crosstalk between DNA-peptide probes in multiplex assay was sophisticatedly evaluated. Using this quasi-targeted proteomics assay, the level of target miRNAs was determined in 3 human breast cell lines and 36 matched pairs of breast tissue samples. Finally, simplex assay and qRT-PCR were also performed for a comparison. This approach grafts the strategy of targeted proteomics into miRNA quantification and may offer a new way for multiplexed miRNA profiling.


Assuntos
Neoplasias da Mama/diagnóstico , Cromatografia Líquida/métodos , Sondas de DNA/genética , MicroRNAs/análise , Peptídeos/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Biomarcadores/análise , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Impressões Digitais de DNA , Feminino , Humanos , Técnicas de Diagnóstico Molecular/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...