Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(37): 4926-4929, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38629227

RESUMO

A turn-on fluorescence aptasensing approach for the highly sensitive and selective determination of 5-HT was proposed via target-induced knot displacement. 5-HT can be determined in a range from 0.5 nM to 100 nM with a limit of detection as low as 0.1 nM and a low dissociation constant of 2.3 nM.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Corantes Fluorescentes , Serotonina , Espectrometria de Fluorescência , Aptâmeros de Nucleotídeos/química , Serotonina/análise , Serotonina/química , Técnicas Biossensoriais/métodos , Corantes Fluorescentes/química , Limite de Detecção , Humanos , Fluorescência
2.
J Hazard Mater ; 465: 133112, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38043420

RESUMO

Hexavalent chromium (Cr(VI)) contamination in soil and groundwater is usually remediated via reduction techniques. The formation of crystalline chromium phosphate (CrPO4·6 H2O) occurs as a byproduct during Cr(VI) remediation processes in the presence of phosphate, yet its stability in the environment has received limited attention. In this study, the formation conditions, structure, properties, and risks associated with the dissolution and oxidation of CrPO4·6 H2O were comprehensively assessed. Results showed that crystalline CrPO4·6 H2O was formed under pH 5 - 7 at room temperature. CrPO4·6 H2O exhibits higher dissolution risk compared to Cr(OH)3·3 H2O due to a long Cr-P bond (4.2 Å). H+ and OH- increased the risk of dissolution at pH 5 and 11, respectively, owing to the formation of CrH2PO42+ and Cr(OH)4-. In addition, under faintly acidic conditions, the high solubility of CrPO4·6 H2O increases the risk of oxidation; under neutral and weakly alkaline conditions, the presence of positively charged Cr(H2O)63+ structures on the surface elevates its susceptibility to contact and oxidation by δ-MnO2 compared to Cr(OH)3·3 H2O. Specifically, at pH 11, the conversion of CrPO4·6 H2O to Cr(OH)3·3 H2O results in similar oxidation risks for both Cr(III) precipitates.

3.
Langmuir ; 39(19): 6681-6690, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37140168

RESUMO

The understanding of the dissolution processes of solids is important for the design and synthesis of solids in a controlled and precise manner and for predicting their fate in the aquatic environment. We report herein single-particle-based confocal laser scanning microscopy (CLSM) for tracking the dissolution surface kinetics of a single fluorescent cyclodextrin metal-organic framework (CD-MOF). As a proof of concept, CD-MOF containing fluorescein, named as CD-MOF⊃FL, was synthesized by encapsulating fluorescein into the interior of CD-MOF via a vapor diffusion method and used as a single-particle dissolution model because of its high FL efficiency and unique structure. The morphology of CD-MOF⊃FL and the distribution of fluorescein within CD-MOF⊃FL were characterized. The growth and dissolution processes of CD-MOF⊃FL at the single-particle level were visualized and quantified for the first time by recording the change of the fluorescence emission. Three processes, including nucleation, germination growth, and saturation stage, were found in the growth of CD-MOF⊃FL, and the growth kinetics followed Avrami's model. The dissolution rate at the face of a single CD-MOF⊃FL crystal was slower than that of its arris, and the dissolution rate of the CD-MOF⊃FL crystal was increased with the increase of the water amount in methanol solution. The dissolution process of the CD-MOF⊃FL crystal was a competitive process of erosion and diffusion in different methanol aqueous solutions, and the dissolution kinetics followed the Korsmeyer-Peppas model. These results offer new insights into the nature of dissolution kinetics of CD-MOF⊃FL and provide new venues for the quantitative analysis of solid dissolution and growth at the single-particle level.

4.
Chem Asian J ; 18(6): e202201284, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36719254

RESUMO

We report the rational design of the matrix-free carbon dots (C-dots) with long wavelength and wavelength-tunable room-temperature phosphorescence (RTP). Taking advantage of microwave-assisted heating treatment, three RTP C-dots in boric acid (BA) composites are synthesized by using diethylenetriaminepentakis (methylphosphonic acid) as a multiple-sites crosslink agent, a moderately acid catalyst and P source; phenylenediamines (either o-PD, m-PD, or p-PD, respectively) as building block while BA as a carbonization-retardant matrix. After the water-soluble BA matrix is removed by dialysis, three matrix-free C-dots are obtained with RTP emission at 540, 550 and 570 nm under an excitation wavelength of 365 nm. Alterations of RTP emission of three matrix-free C-dots are ascribed to the difference in their particle size and band gap from n-π* transition. Furthermore, the application of three matrix-free C-dots are successfully performed in information encryption and decryption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...