Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35806432

RESUMO

Ovate family proteins (OFPs) are valued as a family of transcription factors that are unique to plants, and they play a pluripotent regulatory role in plant growth and development, including secondary-cell-wall synthesis, DNA repair, gibberellin synthesis, and other biological processes, via their interaction with TALE family proteins. In this study, CHIP-SEQ was used to detect the potential target genes of AtOFP1 and its signal-regulation pathways. On the other hand, Y2H and BIFC were employed to prove that AtOFP1 can participate in ABA signal transduction by interacting with one of the TALE family protein called AtKNAT3. ABA response genes are not only significantly upregulated in the 35S::HAOFP1 OE line, but they also show hypersensitivity to ABA in terms of seed germination and early seedling root elongation. In addition, the AtOFP1-regulated target genes are mainly mitochondrial membranes that are involved in the oxidative-phosphorylation pathway. Further qRT-PCR results showed that the inefficient splicing of the respiratory complex I subunit genes NAD4 and NAD7 may lead to ROS accumulation in 35S::HA-AtOFP1 OE lines. In conclusion, we speculated that the overexpression of AtOFP1 may cause the ABA hypersensitivity response by increasing the intracellular ROS content generated from damage to the intima systems of mitochondria.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fenômenos Biológicos , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/genética , Homeostase , Espécies Reativas de Oxigênio/metabolismo , Sementes/metabolismo , Fatores de Transcrição/metabolismo
2.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451131

RESUMO

Tomato (Solanum lycopersicum) as an important vegetable grown around the world is threatened by many diseases, which seriously affects its yield. Therefore, studying the interaction between tomato and pathogenic bacteria is biologically and economically important. The TPR (Tetratricopeptide repeat) gene family is a class of genes containing TPR conserved motifs, which are widely involved in cell cycle regulation, gene expression, protein degradation and other biological processes. The functions of TPR gene in Arabidopsis and wheat plants have been well studied, but the research on TPR genes in tomato is not well studied. In this study, 26 TPR gene families were identified using bioinformatics based on tomato genome data, and they were analyzed for subcellular localization, phylogenetic evolution, conserved motifs, tissue expression, and GO (Gene Ontology) analysis. The qRT-PCR was used to detect the expression levels of each member of the tomato TPR gene family (SlTPRs) under biological stress (Botrytis cinerea) and abiotic stress such as drought and abscisic acid (ABA). The results showed that members of the tomato TPR family responded to various abiotic stresses and Botrytis cinerea stress, and the SlTPR2 and SlTPR4 genes changed significantly under different stresses. Using VIGS (Virus-induced gene silencing) technology to silence these two genes, the silenced plants showed reduced disease resistance. It was also shown that TPR4 can interact with atpA which encodes a chloroplast ATP synthase CF1 α subunit. The above results provide a theoretical basis for further exploring the molecular mechanism of TPR-mediated resistance in disease defense, and also provide a foundation for tomato disease resistance breeding.


Assuntos
Família Multigênica , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Repetições de Tetratricopeptídeos/genética , Motivos de Aminoácidos , Proteínas de Transporte , Biologia Computacional/métodos , Sequência Conservada , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Inativação Gênica , Humanos , Solanum lycopersicum/classificação , Solanum lycopersicum/metabolismo , Anotação de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ligação Proteica , Estresse Fisiológico/genética
3.
Int J Mol Sci ; 21(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31877938

RESUMO

The calcineurin B-like interacting protein kinase (CIPK) protein family is a critical protein family in plant signaling pathways mediated by Ca2+, playing a pivotal role in plant stress response and growth. However, to the best of our knowledge, no study of the tomato CIPK gene family in response to abiotic stress has been reported. In this study, 22 members of the tomato CIPK gene family were successfully identified by using a combination of bioinformatics techniques and molecular analyses. The expression level of each member of tomato CIPK gene family under abiotic stress (low temperature, high salt, drought treatment) was determined by qRT-PCR. Results indicated that tomato CIPK demonstrated different degrees of responding to various abiotic stresses, and changes in SlCIPK1 and SlCIPK8 expression level were relatively apparent. The results of qRT-PCR showed that expression levels of SlCIPK1 increased significantly in early stages of cold stress, and the expression level of SlCIPK8 increased significantly during the three treatments at different time points, implicating Solanum lycopersicum CIPK1(SlCIPK1) and Solanum lycopersicum CIPK8 (SlCIPK8) involvement in abiotic stress response. SlCIPK1 and SlCIPK8 were silenced using Virus-induced gene silencing (VIGS), and physiological indexes were detected by low temperature, drought, and high salt treatment. The results showed that plants silenced by SlCIPK1 and SlCIPK8 at the later stage of cold stress were significantly less resistant to cold than wild-type plants. SlCIPK1 and SlCIPK8 silenced plants had poor drought resistance, indicating a relationship between SlCIPK1 and SlCIPK8 with response to low temperature and drought resistance. This is the first study to uncover the nucleotide sequence for tomato CIPK family members and systematically study the changes of tomato CIPK family members under abiotic stress. Here, we investigate the CIPK family's response under abiotic stress providing understanding into the signal transduction pathway. This study provides a theoretical basis for elucidating the function of tomato CIPK at low temperature and its molecular mechanism of regulating low temperatures.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas Serina-Treonina Quinases , Solanum lycopersicum , Temperatura Baixa , Desidratação/enzimologia , Desidratação/genética , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...