Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 9: uhac179, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338840

RESUMO

Apple bud sports offer a rich resource for clonal selection of numerous elite cultivars. The accumulation of somatic mutations as plants develop may potentially impact the emergence of bud sports. Previous studies focused on somatic mutation in the essential genes associated with bud sports. However, the rate and function of genome-wide somatic mutations that accumulate when a bud sport arises remain unclear. In this study, we identified a branch from a 10-year-old tree of the apple cultivar 'Oregon Spur II' as a bud sport. The mutant branch showed reduced red coloration on fruit skin. Using this plant material, we assembled a high-quality haplotype reference genome consisting of 649.61 Mb sequences with a contig N50 value of 2.04 Mb. We then estimated the somatic mutation rate of the apple tree to be 4.56 × 10 -8 per base per year, and further identified 253 somatic single-nucleotide polymorphisms (SNPs), including five non-synonymous SNPs, between the original type and mutant samples. Transcriptome analyses showed that 69 differentially expressed genes between the original type and mutant fruit skin were highly correlated with anthocyanin content. DNA methylation in the promoter of five anthocyanin-associated genes was increased in the mutant compared with the original type as determined using DNA methylation profiling. Among the genetic and epigenetic factors that directly and indirectly influence anthocyanin content in the mutant apple fruit skin, the hypermethylated promoter of MdMYB10 is important. This study indicated that numerous somatic mutations accumulated at the emergence of a bud sport from a genome-wide perspective, some of which contribute to the low coloration of the bud sport.

2.
BMC Plant Biol ; 19(1): 345, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31390991

RESUMO

BACKGROUND: Aquaporin (AQP) proteins comprise a group of membrane intrinsic proteins (MIPs) that are responsible for transporting water and other small molecules, which is crucial for plant survival under stress conditions including salt stress. Despite the vital role of AQPs, little is known about them in cucumber (Cucumis sativus L.). RESULTS: In this study, we identified 39 aquaporin-encoding genes in cucumber that were separated by phylogenetic analysis into five sub-families (PIP, TIP, NIP, SIP, and XIP). Their substrate specificity was then assessed based on key amino acid residues such as the aromatic/Arginine (ar/R) selectivity filter, Froger's positions, and specificity-determining positions. The putative cis-regulatory motifs available in the promoter region of each AQP gene were analyzed and results revealed that their promoter regions contain many abiotic related cis-regulatory elements. Furthermore, analysis of previously released RNA-seq data revealed tissue- and treatment-specific expression patterns of cucumber AQP genes (CsAQPs). Three aquaporins (CsTIP1;1, CsPIP2;4, and CsPIP1;2) were the most transcript abundance genes, with CsTIP1;1 showing the highest expression levels among all aquaporins. Subcellular localization analysis in Nicotiana benthamiana epidermal cells revealed the diverse and broad array of sub-cellular localizations of CsAQPs. We then performed RNA-seq to identify the expression pattern of CsAQPs under salt stress and found a general decreased expression level of root CsAQPs. Moreover, qRT-PCR revealed rapid changes in the expression levels of CsAQPs in response to diverse abiotic stresses including salt, polyethylene glycol (PEG)-6000, heat, and chilling stresses. Additionally, transient expression of AQPs in N. benthamiana increased leaf water loss rate, suggesting their potential roles in the regulation of plant water status under stress conditions. CONCLUSIONS: Our results indicated that CsAQPs play important roles in response to salt stress. The genome-wide identification and primary function characterization of cucumber aquaporins provides insight to elucidate the complexity of the AQP gene family and their biological functions in cucumber.


Assuntos
Aquaporinas/fisiologia , Cucumis sativus/genética , Proteínas de Plantas/fisiologia , Aquaporinas/genética , Aquaporinas/metabolismo , Cucumis sativus/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Peróxido de Hidrogênio/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Transcriptoma , Água/metabolismo
3.
Oncol Lett ; 12(2): 863-870, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27446361

RESUMO

The objective of the present study was to determine the 'stemness' characteristics of CD133+ cells (harvested from the squamous cell tongue carcinoma Tca-8113 cell line) in vitro and to observe the tumourigenicity of the CD133+ cells in the bodies of NOD/SCID mice. Single cells from the Tca-8113 cell line were observed for multiplication capacity in vitro. The suspending and pelletizing phenomena of Tca-8113 cells in vitro were also observed, and the expression of CD133 in squamous cell carcinoma of the tongue was measured. The CD133+ cells from the Tca-8113 cell line were purified, and their multiplication capacity and differentiation potency were observed. The NOD/SCID mouse model was established, and the tumourigenicity of the CD133+ cells was determined. The Tca-8113 cells were observed to emerge in the form of suspending tumour spheres in squamous cell carcinoma of the tongue. Monoplasts with sustainable multiplication capacity accounted for ~5.32% of the spheres, and 0.95% of the CD133+ cells were expressed in squamous cell carcinoma of the tongue, with stronger multiplication capacity and differentiation potency in vitro. Stronger tumourigenicity was also observed in the bodies of the NOD/SCID mice. CD133- cells exhibited a multiplication capacity to a certain extent. Overall, the CD133+ cells in squamous cell carcinoma of the tongue are characterised by relatively strong tumourigenicity capacity in vivo and in vitro. To a certain extent, these CD133+ cells demonstrate the characteristics of 'stemness'.

4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(12): 3382-7, 2015 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-26964214

RESUMO

Near-infrared reflectance spectroscopy (NIRS) is an inexpensive, rapid, environment-friendly and non-invasive analytical technique that has been extensively applied in the analysis of the dietary attributes and the animal products. Acquisition of dietary attributes is essential for nutritional diagnoses to provide animals with reasonable diet. Traditionally, the calibration equations for the prediction of dietary attributes (e. g. crude protein) are developed from feed NIR spectra and the results of conventional chemical analysis (i. e. reference data). It is difficult to obtain the NIR spectra of forages consumed by grazing animals, so the method of this calibration is inappropriate for free-grazing herbivores. Feces, as the animal's metabolites, contain the information about both the animal's diet and the animal itself. Recently, Fecal-NIRS (F. NIRS) has been directly used to monitor diet information (botanical composition, chemical composition and digestibility), based on correlation between reference data and fecal NIR profile. Subsequently, some additional application (such as sex and species discrimination, reproductive and parasite status) of F. NIRS also is outlined. In the last, application of NIRS in animal manure is summarized. NIRS was shown to be an alternative to conventional wet chemical methods for analyzing some nutrient concentrations in animal manure rapidly. Overall, this paper proves that F. NIRS is a rapid and valid tool for the determination of the dietary attributes and of the physiological status of animal, although more efforts need to be done to improve the accuracy of the F. NIRS technique. Several researchers in English have reviewed the applications of F. NIRS. In China, however, there is a paucity of research and application regarding F. NIRS. We expect that this paper in Chinese will be helpful to the development of F. NIRS in China. At the same time, we propose NIRS as a simple and rapid analytical method for predicting the main chemical composition (dry matter, organ matter, total solid, volatile solid, total nitrogen, total Kjeldahl nitrogen and ammonium nitrogen) in animal manure.


Assuntos
Fezes/química , Espectroscopia de Luz Próxima ao Infravermelho , Ração Animal , Animais , Calibragem , China , Herbivoria , Esterco , Nitrogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...