Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mech Ageing Dev ; 218: 111901, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38215997

RESUMO

Pharmacological strategies to delay aging and combat age-related diseases are increasingly promising. This study explores the anti-aging and therapeutic effects of two novel 18-norspirostane steroidal saponins from Trillium tschonoskii Maxim, namely deoxytrillenoside CA (DTCA) and epitrillenoside CA (ETCA), using Caenorhabditis elegans (C. elegans). Both DTCA and ETCA significantly extended the lifespan of wild-type N2 worms and improved various age-related phenotypes, including muscle health, motility, pumping rate, and lipofuscin accumulation. Furthermore, these compounds exhibited notable alleviation of pathology associated with Parkinson's disease (PD) and Huntington's disease (HD), such as the reduction of α-synuclein and poly40 aggregates, improvement in motor deficits, and mitigation of neuronal damage. Meanwhile, DTCA and ETCA improved the lifespan and healthspan of PD- and HD-like C. elegans models. Additionally, DTCA and ETCA enhanced the resilience of C. elegans against heat and oxidative stress challenges. Mechanistic studies elucidated that DTCA and ETCA induced mitophagy and promoted mitochondrial biogenesis in C. elegans, while genetic mutations or RNAi knockdown affecting mitophagy and mitochondrial biogenesis effectively eliminated their capacity to extend lifespan and reduce pathological protein aggregates. Together, these compelling findings highlight the potential of DTCA and ETCA as promising therapeutic interventions for delaying aging and preventing age-related diseases.


Assuntos
Proteínas de Caenorhabditis elegans , Doença de Parkinson , Saponinas , Animais , Caenorhabditis elegans/metabolismo , Longevidade , Mitofagia , Biogênese de Organelas , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Saponinas/farmacologia
2.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003724

RESUMO

Alzheimer's disease (AD) presents a significant challenge to global healthcare systems, with current treatments offering only modest relief and often bringing unwanted side effects, necessitating the exploration of more effective and safer drugs. In this study, we employed the Caenorhabditis elegans (C. elegans) model, specifically the AD-like CL4176 strain expressing the human Aß(1-42) protein, to investigate the potential of Reineckia carnea extract and its fractions. Our results showed that the Reineckia carnea ether fraction (REF) notably diminished the paralysis rates of CL4176 worms. Additionally, REF also attenuated the neurotoxicity effects prompted by Tau proteins in the BR5270 worms. Moreover, REF was observed to counteract the accumulation of Aß and pTau proteins and their induced oxidative stress in C. elegans AD-like models. Mechanistic studies revealed that REF's benefits were associated with the induction of autophagy in worms; however, these protective effects were nullified when autophagy-related genes were suppressed using RNAi bacteria. Together, these findings highlight Reineckia carnea ether fraction as a promising candidate for AD treatment, warranting further investigation into its autophagy-inducing components and their molecular mechanisms.


Assuntos
Doença de Alzheimer , Proteínas de Caenorhabditis elegans , Animais , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Caenorhabditis elegans/metabolismo , Animais Geneticamente Modificados , Peptídeos beta-Amiloides/metabolismo , Éter/farmacologia , Proteínas de Caenorhabditis elegans/metabolismo , Etil-Éteres/metabolismo , Etil-Éteres/farmacologia , Etil-Éteres/uso terapêutico , Éteres/farmacologia , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...