Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 34(2): 3224-3238, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31917470

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) is common clinical complication, which represents significant challenge in the treatment of acute myocardial infarction (AMI) diseases. Interleukin 35 (IL-35) exhibits anti-inflammatory properties via the engagement of the gp130, IL-12Rß2 and IL-27Rα receptors. However, whether IL-35 plays a beneficial role in the treatment of MIRI and potential underling mechanism are unclear. We showed that IL-35 conferred protection from MIRI as demonstrated by reduced infarct size and cardiac troponin T, improved cardiac function and decreased cardiomyocyte apoptosis in a mouse model. Despite activation of both STAT3 and STAT5 phosphorylation in the heart by IL-35, signal transducers and activators of transcription 3 (STAT3) was essential for mediating the IL-35-mediated protective effect on MIRI using cardiomyocyte-specific STAT3 deficient mice. Furthermore, gp130 was required for the STAT3 activation and cardio-protection induced by IL-35. Interestingly, IL-35 induced gp130 homodimer and gp130/IL-12Rß2 heterodimers in cardiomyocyte. Our results indicate that IL-35 can execute a protective role against MIRI through a novel signaling pathway, IL-35-gp130-STAT3 pathway, in cardiomyocytes, which may be beneficial for the development of novel and effective therapeutic approaches to treat the MIRI.


Assuntos
Receptor gp130 de Citocina/metabolismo , Interleucinas/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miócitos Cardíacos/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Apoptose , Linhagem Celular , Células Cultivadas , Interleucinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Troponina T/metabolismo
2.
Cell Physiol Biochem ; 46(1): 23-35, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29566367

RESUMO

BACKGROUND/AIMS: Newly identified IL-10-producing regulatory B cells (Bregs) have been shown to play an important role in the suppression of immune responses. Chronic immune activation participates in the pathogenesis of dilated cardiomyopathy (DCM) but whether Bregs are involved in its development remains unclear. We aimed to investigate the circulating frequency and function of Bregs in DCM. METHODS: In total, 35 DCM patients (20 men and 15 women) and 44 healthy controls (23 men and 21 women) were included in the experiment, and the frequency of Bregs was detected using flow cytometry. RESULTS: According to our results, the frequency of circulating IL-10-producing Bregs was significantly lower in DCM patients compared with healthy controls. Furthermore, the CD24hiCD27+ B cell subset in which IL-10-producing Bregs were mainly enriched from DCM patients showed impaired IL-10 expression and a decreased ability to suppress the TNF-α production of CD4+CD25- Tconv cells and to maintain Tregs differentiation. Correlation analysis showed that the frequency of IL-10-producing Bregs and the suppressive function of CD24hiCD27+ B cells were positively correlated with left ventricular ejection fraction and negatively correlated with NT-proBNP in DCM patients. CONCLUSIONS: In conclusion, the reduced frequency and impaired functions suggest a potential role of Bregs in the development of DCM.


Assuntos
Linfócitos B Reguladores/metabolismo , Cardiomiopatia Dilatada/patologia , Adulto , Idoso , Linfócitos B Reguladores/citologia , Antígeno CD24/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Cardiomiopatia Dilatada/imunologia , Cardiomiopatia Dilatada/metabolismo , Estudos de Casos e Controles , Diferenciação Celular , Proliferação de Células , Feminino , Ventrículos do Coração/diagnóstico por imagem , Humanos , Interleucina-10/metabolismo , Leucócitos Mononucleares/citologia , Masculino , Pessoa de Meia-Idade , Peptídeo Natriurético Encefálico/análise , Peptídeo Natriurético Encefálico/metabolismo , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Br J Pharmacol ; 175(8): 1329-1343, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28294304

RESUMO

BACKGROUND AND PURPOSE: The immune system plays an important role in driving the acute inflammatory response following myocardial ischaemia/reperfusion injury (MIRI). IL-21 is a pleiotropic cytokine with multiple immunomodulatory effects, but its role in MIRI is not known. EXPERIMENTAL APPROACH: Myocardial injury, neutrophil infiltration and the expression of neutrophil chemokines KC (CXCL1) and MIP-2 (CXCL2) were studied in a mouse model of MIRI. Effects of IL-21 on the expression of KC and MIP-2 in neonatal mouse cardiomyocytes (CMs) and cardiac fibroblasts (CFs) were determined by real-time PCR and ELISA. The signalling mechanisms underlying these effects were explored by western blot analysis. KEY RESULTS: IL-21 was elevated within the acute phase of murine MIRI. Neutralization of IL-21 attenuated myocardial injury, as illustrated by reduced infarct size, decreased cardiac troponin T levels and improved cardiac function, whereas exogenous IL-21 administration exerted opposite effects. IL-21 increased the infiltration of neutrophils and increased the expression of KC and MIP-2 in myocardial tissue following MIRI. Moreover, neutrophil depletion attenuated the IL-21-induced myocardial injury. Mechanistically, IL-21 increased the production of KC and MIP-2 in neonatal CMs and CFs, and enhanced neutrophil migration, as revealed by the migration assay. Furthermore, we demonstrated that this IL-21-mediated increase in chemokine expression involved the activation of Akt/NF-κB signalling in CMs and p38 MAPK/NF-κB signalling in CFs. CONCLUSIONS AND IMPLICATIONS: Our data provide novel evidence that IL-21 plays a pathogenic role in MIRI, most likely by promoting cardiac neutrophil infiltration. Therefore, targeting IL-21 may have therapeutic potential as a treatment for MIRI. LINKED ARTICLES: This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.


Assuntos
Interleucinas/fisiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Neutrófilos/fisiologia , Animais , Movimento Celular , Células Cultivadas , Quimiocina CXCL1/fisiologia , Quimiocina CXCL2/fisiologia , Fibroblastos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/fisiologia , Receptores de Interleucina-21/fisiologia , Troponina T/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...