Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCO Precis Oncol ; 8: e2400111, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38976830

RESUMO

PURPOSE: Simultaneous profiling of cell-free DNA (cfDNA) methylation and fragmentation features to improve the performance of cfDNA-based cancer detection is technically challenging. We developed a method to comprehensively analyze multimodal cfDNA genomic features for more sensitive esophageal squamous cell carcinoma (ESCC) detection. MATERIALS AND METHODS: Enzymatic conversion-mediated whole-methylome sequencing was applied to plasma cfDNA samples extracted from 168 patients with ESCC and 251 noncancer controls. ESCC characteristic cfDNA methylation, fragmentation, and copy number signatures were analyzed both across the genome and at accessible cis-regulatory DNA elements. To distinguish ESCC from noncancer samples, a first-layer classifier was developed for each feature type, the prediction results of which were incorporated to construct the second-layer ensemble model. RESULTS: ESCC plasma genome displayed global hypomethylation, altered fragmentation size, and chromosomal copy number alteration. Methylation and fragmentation changes at cancer tissue-specific accessible cis-regulatory DNA elements were also observed in ESCC plasma. By integrating multimodal genomic features for ESCC detection, the ensemble model showed improved performance over individual modalities. In the training cohort with a specificity of 99.2%, the detection sensitivity was 81.0% for all stages and 70.0% for stage 0-II. Consistent performance was observed in the test cohort with a specificity of 98.4%, an all-stage sensitivity of 79.8%, and a stage 0-II sensitivity of 69.0%. The performance of the classifier was associated with the disease stage, irrespective of clinical covariates. CONCLUSION: This study comprehensively profiles the epigenomic landscape of ESCC plasma and provides a novel noninvasive and sensitive ESCC detection approach with genome-scale multimodal analysis.


Assuntos
Ácidos Nucleicos Livres , Metilação de DNA , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/sangue , Neoplasias Esofágicas/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Carcinoma de Células Escamosas do Esôfago/genética , Idoso , Epigenoma
4.
Adv Healthc Mater ; 13(16): e2400381, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38467587

RESUMO

Cancer stem cells (CSCs) are essential for tumor initiation, recurrence, metastasis, and resistance. However, targeting CSCs as a therapeutic approach remains challenging. Here, a stemness signature based on 22-gene is developed to predict prognosis in esophageal squamous cell carcinoma (ESCC). Staurosporine (STS) is identified as a radioresistance suppressor by high-throughput screening of a library of 2131 natural compounds, leading to dramatically improved radiotherapy efficacy in subcutaneous tumor models. Mechanistically, STS inhibits cell proliferation through the mTOR/AKT signaling pathway and suppressed stemness by targeting ATP-binding cassette A1 (ABCA1), which is transcriptionally regulated by liver X receptor alpha (LXRα). STS can selectively bind to the nucleotide-binding domain (NBD) of ABCA1 and compete for ATP, blocking ABCA1-mediated drug efflux and facilitating intracellular accumulation of STS. Considering the cytotoxicity of STS, an extracellular vesicle-encapsulated STS system (EV-STS) is established for effective STS delivery. EV-STS shows remarkable tumor growth inhibition, even at half the dose of STS, with superior safety and efficacy. These findings indicate that ABCA1 may serve as a predictor of response to neoadjuvant chemotherapy and/or radiotherapy in ESCC patients. EV-STS has shown improved antitumor efficacy and low systemic toxicity, offering a promising therapeutic approach for ESCC.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Vesículas Extracelulares , Tolerância a Radiação , Estaurosporina , Humanos , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Estaurosporina/farmacologia , Estaurosporina/análogos & derivados , Animais , Vesículas Extracelulares/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/terapia , Camundongos Nus , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Camundongos Endogâmicos BALB C
5.
Adv Mater ; 36(23): e2311291, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38408154

RESUMO

Radiotherapy, a widely used therapeutic strategy for esophageal squamous cell carcinoma (ESCC), is always limited by radioresistance of tumor tissues and side-effects on normal tissues. Herein, a signature based on four core genes of cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway, is developed to predict prognosis and assess immune cell infiltration, indicating that the cGAS-STING pathway and radiotherapy efficacy are closely intertwined in ESCC. A novel lipid-modified manganese diselenide nanoparticle (MnSe2-lipid) with extraordinarily uniform sphere morphology and tumor microenvironment (TME) responsiveness is developed to simultaneously overcome radioresistance and reduce side-effects of radiation. The uniform MnSe2 encapsulated lipid effectively achieves tumor accumulation. Octadecyl gallate on surface of MnSe2 forming pH-responsive metal-phenolic covalent realizes rapid degradation in TME. The released Mn2+ promotes radiosensitivity by generating reactive oxygen species induced by Fenton-like reaction and activating cGAS-STING pathway. Spontaneously, selenium strengthens immune response by promoting secretion of cytokines and increasing white blood cells, and performs antioxidant activity to reduce side-effects of radiotherapy. Overall, this multifunctional remedy which is responsive to TME is capable of providing radiosensitivity by cGAS-STING pathway-mediated immunostimulation and chemodynamic therapy, and radioprotection of normal tissues, is highlighted here to optimize ESCC treatment.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Nanopartículas , Tolerância a Radiação , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Animais , Nanopartículas/química , Linhagem Celular Tumoral , Camundongos , Ácido Gálico/química , Ácido Gálico/farmacologia , Ácido Gálico/análogos & derivados , Lipídeos/química , Selênio/química , Selênio/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Protetores contra Radiação/farmacologia , Protetores contra Radiação/química , Manganês/química , Radiossensibilizantes/química , Radiossensibilizantes/farmacologia
6.
Cancer Lett ; 587: 216731, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38369005

RESUMO

Therapy resistance and metastatic progression jointly determine the fatal outcome of cancer, therefore, elucidating their crosstalk may provide new opportunities to improve therapeutic efficacy and prevent recurrence and metastasis in esophageal squamous cell carcinoma (ESCC). Here, we have established radioresistant ESCC cells with the remarkable metastatic capacity, and identified miR-494-3p (miR494) as a radioresistant activator. Mechanistically, we demonstrated that cullin 3 (CUL3) is a direct target of miR494, which is transcriptionally regulated by JunD, and highlighted that JunD-miR494-CUL3 axis promotes radioresistance and metastasis by facilitating epithelial-mesenchymal transition (EMT) and restraining programmed cell death 1 ligand 1 (PD-L1) degradation. In clinical specimens, miR494 is significantly up-regulated and positively associated with T stage and lymph node metastasis in ESCC tissues and serum. Notably, patients with higher serum miR494 expression have poor prognosis, and patients with higher CUL3 expression have more conventional dendritic cells (cDCs) and plasmacytoid DCs (pDCs), less cancer-associated fibroblasts (CAF2/4), and tumor endothelial cells (TEC2/3) infiltration than patients with lower CUL3 expression, suggesting that CUL3 may be involved in tumor microenvironment (TME). Overall, miR494 may serve as a potential prognostic predictor and therapeutic target, providing a promising strategy for ESCC treatment.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/radioterapia , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/metabolismo , Células Endoteliais/metabolismo , Prognóstico , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Microambiente Tumoral , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Culina/genética
7.
Synth Syst Biotechnol ; 8(3): 416-426, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37384125

RESUMO

The ability to precisely control activities of engineered designer cells provides a novel strategy for modern precision medicine. Dynamically adjustable gene- and cell-based precision therapies are recognized as next generation medicines. However, the translation of these controllable therapeutics into clinical practice is severely hampered by the lack of safe and highly specific genetic switches controlled by triggers that are nontoxic and side-effect free. Recently, natural products derived from plants have been extensively explored as trigger molecules to control genetic switches and synthetic gene networks for multiple applications. These controlled genetic switches could be further introduced into mammalian cells to obtain synthetic designer cells for adjustable and fine tunable cell-based precision therapy. In this review, we introduce various available natural molecules that were engineered to control genetic switches for controllable transgene expression, complex logic computation, and therapeutic drug delivery to achieve precision therapy. We also discuss current challenges and prospects in translating these natural molecule-controlled genetic switches developed for biomedical applications from the laboratory to the clinic.

8.
Heliyon ; 9(4): e14515, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37025904

RESUMO

Circulating miRNA expression is most commonly measured by qRT-PCR, however, the lack of a suitable endogenous control hinders people from evaluating the accurate changes in miRNA expression levels and developing the non-invasive biomarkers. In this study, we aimed to screen the specific, highly stable endogenous control in esophageal squamous cell carcinoma (ESCC) to overcome the obstacle. We selected "housekeeping" miRNAs according to the published database and initially acquired 21 miRNAs. Subsequently, we screened these miRNAs using GSE106817 and TCGA datasets according to specific inclusion criteria and evaluated the suitability of "candidate" miRNAs. Among these miRNAs, the average abundance of miR-423-5p was relatively high in serum. Notably, miR-423-5p expression in serum showed no significant difference between ESCC patients and healthy controls (n = 188, P = 0.29). Moreover, among these miRNAs, miR-423-5p was the most stable miRNA using the NormFinder algorithms. Overall, these results indicate that miR-423-5p, as a novel and optimal endogenous control, could be used to quantify circulating miRNAs in ESCC.

9.
Signal Transduct Target Ther ; 7(1): 370, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36274060

RESUMO

Whereas it is appreciated that cancer cells rewire lipid metabolism to survive and propagate, the roles of lipid metabolism in metastasis remain largely unknown. In this study, using esophageal squamous cell carcinoma (ESCC) as a pulmonary metastasis model, we find that the enzyme fatty acid 2-hydroxylase (FA2H), which catalyzes the hydroxylation of free fatty acids (FAs), is enriched in a subpopulation of ESCC cells with high metastatic potential, and that FA2H knockdown markedly mitigates metastatic lesions. Moreover, increased FA2H expression is positively associated with poor survival in patients with ESCC. Lipidomics analysis identifies that two dihydroceramides-Cer(d18:0/24:0) and Cer(d18:0/24:1)-are increased in FA2H-depleted metastasizing ESCC cells. Upon administration, Cer(d18:0/24:0) and Cer(d18:0/24:1) impair the formation of overt metastases in a mouse experimental metastasis model. Then, forkhead box protein C2 (FOXC2) and FA2H are found to be co-upregulated in metastatic ESCC cell populations and ESCC specimens, and FA2H expression is further experimentally verified to be transcriptionally induced by FOXC2, which is boosted per se by tumour necrosis factor α (TNFα), a critical pro-metastasis cytokine in the tumour microenvironment, in metastasizing cells. Together, these results demonstrate that TNFα-FOXC2-FA2H is a novel signaling axis to promote metastasis, and its downstream dihydroceramide products could be promising drugs to intervene in metastasis.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Camundongos , Carcinoma de Células Escamosas do Esôfago/genética , Fator de Necrose Tumoral alfa , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Ácidos Graxos não Esterificados , Ceramidas/metabolismo , Metabolismo dos Lipídeos/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Fatores de Transcrição Forkhead , Microambiente Tumoral
10.
Nat Commun ; 13(1): 6357, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289204

RESUMO

Surgical resection is the main treatment option for most solid tumors, yet cancer recurrence after surgical resection remains a significant challenge in cancer therapy. Recent advances in cancer immunotherapy are enabling radical cures for many tumor patients, but these technologies remain challenging to apply because of side effects related to uncontrollable immune system activation. Here, we develop far-red light-controlled immunomodulatory engineered cells (FLICs) that we load into a hydrogel scaffold, enabling the precise optogenetic control of cytokines release (IFN-ß, TNF-α, and IL-12) upon illumination. Experiments with a B16F10 melanoma resection mouse model show that FLICs-loaded hydrogel implants placed at the surgical wound site achieve sustainable release of immunomodulatory cytokines, leading to prevention of tumor recurrence and increased animal survival. Moreover, the FLICs-loaded hydrogel implants elicit long-term immunological memory that prevents against tumor recurrence. Our findings illustrate that this optogenetic perioperative immunotherapy with FLICs-loaded hydrogel implants offers a safe treatment option for solid tumors based on activating host innate and adaptive immune systems to inhibit tumor recurrence after surgery. Beyond extending the optogenetics toolbox for immunotherapy, we envision that our optogenetic-controlled living cell factory platform could be deployed for other biomedical contexts requiring precision induction of bio-therapeutic dosage.


Assuntos
Recidiva Local de Neoplasia , Optogenética , Camundongos , Animais , Fator de Necrose Tumoral alfa , Imunoterapia , Fatores Imunológicos , Hidrogéis , Citocinas , Interleucina-12/genética
11.
Curr Cancer Drug Targets ; 22(7): 591-602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35362384

RESUMO

BACKGROUND: Ovarian cancer (OVCA) has unique epigenetic alterations and defects in homologous recombination (HR). Despite initial sensitivity to platinum-based chemotherapy, HR dysfunctional tumors eventually acquire drug resistance. Fanconi anemia (FA) is characterized by bone marrow failure (BMF) and a reduced ability to eradicate DNA interstrand cross-links (ICL). However, the mechanism of chemoresistance mediated by FANCI was unclear in OVCA. OBJECTIVE: We explore to identify whether FANCI was involved in chemoresistance in OVCA. METHODS: FANCI expression and epigenetic alterations were analyzed, respectively, using TIMER and cBioPortal. The correlation between FANCI expression and the survival of OVCA patients was analyzed using Kaplan-Meier Plotter, GSE63885, and TCGA-OVCA dataset. FANCI expression in OVCA was detected by immunohistochemistry. Cell proliferation, migration, and invasion in FANCI inhibiting cells were assessed by CCK-8 and Transwell. Apoptosis and DNA damage were examined by flow cytometry and immunofluorescence. Meanwhile, the activity of caspase 3/7 was detected by Caspase-Glo® 3/7 kit. In addition, the expression of FANCI, γH2AX, and apoptosis effectors was examined by Western blot. RESULTS: FANCI has copy number variations (CNVs) in OVCA. The high expression of FANCI in OVCA patients was associated with poor survival. Moreover, FANCI expression was correlated with the response to chemotherapy in OVCA. FANCI expression in OVCA cells was induced by carboplatin in a time-dependent manner. Silencing of FANCI had no effect on cell proliferation, but hindered OVCA cell migration and invasion. Mechanically, knockdown of FANCI enhanced DNA damage-induced apoptosis through the CHK1/2-P53-P21 pathway. CONCLUSION: FANCI may be a potential therapeutic target for OVCA patients.


Assuntos
Anemia de Fanconi , Neoplasias Ovarianas , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Carcinoma Epitelial do Ovário , Variações do Número de Cópias de DNA , Dano ao DNA , Anemia de Fanconi/tratamento farmacológico , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/química , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética
12.
Mol Cancer ; 21(1): 44, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35148754

RESUMO

BACKGROUND: Currently, there is no clinically relevant non-invasive biomarker for early detection of esophageal squamous cell carcinoma (ESCC). Herein, we established and evaluated a circulating microRNA (miRNA)-based signature for the early detection of ESCC using a systematic genome-wide miRNA expression profiling analysis. METHODS: We performed miRNA candidate discovery using three ESCC tissue miRNA datasets (n = 108, 238, and 216) and the candidate miRNAs were confirmed in tissue specimens (n = 64) by qRT-PCR. Using a serum training cohort (n = 408), we conducted multivariate logistic regression analysis to develop an ESCC circulating miRNA signature and the signature was subsequently validated in two independent retrospective and two prospective cohorts. RESULTS: We identified eighteen initial miRNA candidates from three miRNA expression datasets (n = 108, 238, and 216) and subsequently validated their expression in ESCC tissues. We thereafter confirmed the overexpression of 8 miRNAs (miR-103, miR-106b, miR-151, miR-17, miR-181a, miR-21, miR-25, and miR-93) in serum specimens. Using a serum training cohort, we developed a circulating miRNA signature (AUC:0.83 [95%CI:0.79-0.87]) and the diagnostic performance of the miRNA signature was confirmed in two independent validation cohorts (n = 126, AUC:0.80 [95%CI:0.69-0.91]; and n = 165, AUC:0.89 [95%CI:0.83-0.94]). Finally, we demonstrated the diagnostic performance of the 8-miRNA signature in two prospective cohorts (n = 185, AUC:0.92, [95%CI:0.87-0.96]); and (n = 188, AUC:0.93, [95%CI:0.88-0.97]). Importantly, the 8-miRNA signature was superior to current clinical serological markers in discriminating early stage ESCC patients from healthy controls (p < 0.001). CONCLUSIONS: We have developed a novel and robust circulating miRNA-based signature for early detection of ESCC, which was successfully validated in multiple retrospective and prospective multinational, multicenter cohorts.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Biomarcadores Tumorais/genética , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Carcinoma de Células Escamosas do Esôfago/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Biópsia Líquida , MicroRNAs/metabolismo , Prognóstico , Estudos Prospectivos , Estudos Retrospectivos
13.
Adv Mater ; 33(24): e2100556, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33949734

RESUMO

Radioresistance is an important challenge for clinical treatments. The main causes of radioresistance include hypoxia in the tumor microenvironment, the antioxidant system within cancer cells, and the upregulation of DNA repair proteins. Here, a multiple radiosensitization strategy of high-Z-element-based radiation enhancement is designed, attenuating hypoxia and microRNA therapy. The novel 2D graphdiyne (GDY) can firmly anchor and disperse CeO2 nanoparticles to form GDY-CeO2 nanocomposites, which exhibit superior catalase-mimic activity in decomposing H2 O2 to O2 to significantly alleviate tumor hypoxia, promote radiation-induced DNA damage, and ultimately inhibit tumor growth in vivo. The miR181a-2-3p (miR181a) serum levels in patients are predictive of the response to preoperative radiotherapy in locally advanced esophageal squamous cell carcinoma (ESCC) and facilitate personalized treatment. Moreover, miR181a can act as a radiosensitizer by directly targeting RAD17 and regulating the Chk2 pathway. Subsequently, the GDY-CeO2 nanocomposites with miR181a are conjugated with the iRGD-grafted polyoxyethylene glycol (short for nano-miR181a), which can increase the stability, efficiently deliver miR181a to tumor, and exhibit low toxicity. Notably, nano-miR181a can overcome radioresistance and enhance therapeutic efficacy both in a subcutaneous tumor model and human-patient-derived xenograft models. Overall, this GDY-CeO2 nanozyme and miR181a-based multisensitized radiotherapy strategy provides a promising therapeutic approach for ESCC.


Assuntos
Neoplasias Esofágicas , Humanos , MicroRNAs , Hipóxia Tumoral
14.
Front Cell Dev Biol ; 9: 656693, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33768099

RESUMO

This study aims to investigate the prognostic significance of p-JNK in breast cancer patients receiving neoadjuvant chemotherapy (NACT) and analyze the relationship between anisomycin, p-JNK. A total of 104 breast cancer patients had NACT were enrolled in this study. The western blot and immunohistochemistry assays were used to determine the protein expressions of p-JNK in human breast cancer cell lines and patients' cancer tissues. The chi-square test and Fisher's exact test were adopted to gauge the associations between breast cancer and clinicopathological variables by p-JNK expression, whereas the univariate and multivariate Cox proportional hazards regression models were used to analyze the prognostic value of p-JNK expression. The Kaplan-Meier plots and the log-rank test were adopted to determine patients' disease-free survival (DFS) and overall survival (OS). Findings indicated that the p-JNK expression had prognostic significance in univariate and multivariate Cox regression survival analyses. Results of log-rank methods showed that: (1) the mean DFS and OS times in patients with high p-JNK expression were significantly longer than those in patients with low p-JNK expression (χ2 = 5.908, P = 0.015 and χ2 = 6.593, P = 0.010, respectively). p-JNK expression is a significant prognostic factor that can effectively predict the survival in breast cancer patients receiving NACT. Treatment with the JNK agonist anisomycin can induce apoptosis, lead to increased p-JNK expression and decreased p-STAT3 expression. Moreover, the p-JNK expression was inversely correlated with p-STAT3 expression.

16.
Cancer Lett ; 479: 100-111, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32200035

RESUMO

Metastasis is still a major cause of cancer-related mortality. Lysosome-associated membrane protein 3 (LAMP3) has been implicated in the invasiveness and metastasis of multiple cancer types; however, the underlying mechanisms are unclear. In this study, we found that LAMP3 was overexpressed in esophageal squamous cell carcinoma (ESCC) tissues and that this increased expression positively correlated with lymph node metastasis. Depletion of LAMP3 dramatically suppressed the motility of ESCC cells in vitro and experimental pulmonary and lymph node metastasis in vivo. Importantly, knockdown of LAMP3 increased the level of phosphorylated VASP(Ser239), which attenuated the invasive and metastatic capability of ESCC cells. We identified that cAMP-dependent protein kinase A (PKA) was responsible for the phosphorylation of VASP at Ser239. Consistently, silencing of PKA regulatory subunits diminished Ser239 phosphorylation on VASP and restored the motility capacity of LAMP3-depleted ESCC cells. In conclusion, we uncovered a previously unknown role of LAMP3 in promoting cellular motility and metastasis in ESCC.


Assuntos
Moléculas de Adesão Celular/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Proteínas de Membrana Lisossomal/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias/genética , Fosfoproteínas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Metástase Linfática , Proteínas de Membrana Lisossomal/metabolismo , Masculino , Invasividade Neoplásica , Proteínas de Neoplasias/metabolismo , Transplante de Neoplasias , Fosforilação
17.
Cancer Res ; 80(3): 406-417, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32015157

RESUMO

Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complexes have a mutation rate of approximately 20% in human cancer, and ARID1A is the most frequently mutated component. However, some components of SWI/SNF complexes, including ARID1A, exhibit a very low mutation rate in squamous cell carcinoma (SCC), and their role in SCC remains unknown. Here, we demonstrate that the low expression of ARID1A in SCC is the result of promoter hypermethylation. Low levels of ARID1A were associated with a poor prognosis. ARID1A maintained transcriptional homeostasis through both direct and indirect chromatin-remodeling mechanisms. Depletion of ARID1A activated an oncogenic transcriptome that drove SCC progression. The anti-inflammatory natural product parthenolide was synthetically lethal to ARID1A-depleted SCC cells due to its inhibition of both HDAC1 and oncogenic signaling. These findings support the clinical application of parthenolide to treat patients with SCC with low ARID1A expression. SIGNIFICANCE: This study reveals novel inactivation mechanisms and tumor-suppressive roles of ARID1A in SCC and proposes parthenolide as an effective treatment for patients with SCC with low ARID1A expression.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinogênese/patologia , Carcinoma de Células Escamosas/patologia , Metilação de DNA , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição/genética , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Movimento Celular , Proliferação de Células , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Homeostase , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Prognóstico , Sesquiterpenos/farmacologia , Transdução de Sinais , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Oncogene ; 38(25): 4990-5006, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30858545

RESUMO

Cancer cells associated with radioresistance are likely to give rise to local recurrence and distant metastatic relapse. However, it remains unclear whether specific miRNAs have direct roles in radioresistance and/or prognosis. In this study, we find that miR-339-5p promotes radiosensitivity, and is downregulated in radioresistant subpopulations of esophageal cancer cells. Notably, miR-339-5p was selectively secreted into blood via exosomes, and that higher serum miR-339-5p levels were positively associated with radiotherapy sensitivity and good survival. Moreover, miR-339-5p expression was downregulated in the T3/T4 stage compared with T1/T2 stage in esophageal squamous cell carcinoma (ESCC) patients (P = 0.04), and low miR-339-5p expression in tissue was significantly associated with poor overall survival (P = 0.036) and disease-free survival (P = 0.037). Overexpression of miR-339-5p enhanced radiosensitivity in vitro and in vivo. Mechanistically, miR-339-5p enhances radiosensitivity by targeting Cdc25A, and is transcriptionally regulated by Runx3. Correlations were observed between miR-339-5p levels and Cdc25A/Runx3 levels in tissue samples. Intriguingly, combined analysis of miR-339-5p expression with Runx3 increased the separation of the survival curves obtained for either gene alone in the TCGA datasets (P = 0.009). Overall, exosome-derived miR-339-5p mediates radiosensitivity through downregulation of Cdc25A, and predicts pathological response to preoperative radiotherapy in locally advanced ESCC, suggesting it could be a promising non-invasive biomarker for facilitating personalized treatments.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs/fisiologia , Tolerância a Radiação/genética , Fosfatases cdc25/genética , Animais , Biomarcadores Tumorais/fisiologia , Linhagem Celular Tumoral , Progressão da Doença , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/radioterapia , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/radioterapia , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , Invasividade Neoplásica , Recidiva Local de Neoplasia/genética , Prognóstico
19.
Oncotarget ; 7(39): 64233-64243, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27572313

RESUMO

Preoperative chemoradiotherapy (pre-CRT) has been represented as the standard treatment for locally advanced rectal cancer (LARC), but large variations of tumor radiation response to CRT have been reported in the clinic. To explore the function of microRNAs as potential therapeutic predictors of pre-CRT pathological response in LARC, we analyzed global miRNA expression in CRT-sensitive and CRT-resistant groups before treatment. MiR-345 was significantly elevated in the CRT-resistant group. Therefore, miR-345 was selected as a candidate for further analysis. We assessed the correlation between the miRNA signatures and the chemoradiotherapeutic response in 20 randomly selected LARC tissue samples (Validation set) and 87 serum samples (Training set) by qRT-PCR. Further, we validated the results in 42 randomly selected LARC serum samples (Validation set). High miR-345 expression was significantly correlated with unfavorable pre-CRT pathological response in tissue and serum. Moreover, low miR-345 levels predicted superior 3-year local recurrence free survival (LRFS). Taken together, circulating serum miR-345 correlates with unfavorable pre-CRT response and poor locoregional control in LARC. It might be a promising biomarker to facilitate patient stratification for personalized treatment.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/terapia , Biomarcadores Tumorais/genética , Quimiorradioterapia Adjuvante , MicroRNA Circulante/genética , MicroRNAs/genética , Terapia Neoadjuvante , Neoplasias Retais/genética , Neoplasias Retais/terapia , Adenocarcinoma/sangue , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , MicroRNA Circulante/sangue , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Seleção de Pacientes , Medicina de Precisão , Valor Preditivo dos Testes , Tolerância a Radiação/genética , Neoplasias Retais/sangue , Neoplasias Retais/patologia , Reprodutibilidade dos Testes , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...