Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biology (Basel) ; 13(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38927240

RESUMO

Flooding and drought are the two most devastating natural hazards limiting maize production. Exogenous glycinebetaine (GB), an osmotic adjustment agent, has been extensively used but there is limited research on its role in mitigating the negative effects of different abiotic stresses. This study aims to identify the different roles of GB in regulating the diverse defense regulation of maize against drought and flooding. Hybrids of Yindieyu 9 and Heyu 397 grown in pots in a ventilated greenhouse were subjected to flooding (2-3 cm standing layer) and drought (40-45% field capacity) at the three-leaf stage for 8 d. The effects of different concentrations of foliar GB (0, 0.5, 1.0, 5.0, and 10.0 mM) on the physiochemical attributes and growth of maize were tested. Greater drought than flooding tolerance in both varieties to combat oxidative stress was associated with higher antioxidant activities and proline content. While flooding decreased superoxide dismutase and guaiacol peroxidase (POD) activities and proline content compared to normal water, they all declined with stress duration, leading to a larger reactive oxygen species compared to drought. It was POD under drought stress and ascorbate peroxidase under flooding stress that played crucial roles in tolerating water stress. Foliar GB further enhanced antioxidant ability and contributed more effects to POD to eliminate more hydrogen peroxide than the superoxide anion, promoting growth, especially for leaves under water stress. Furthermore, exogenous GB made a greater increment in Heyu 397 than Yindieyu 9, as well as flooding compared to drought. Overall, a GB concentration of 5.0 mM, with a non-toxic effect on well-watered maize, was determined to be optimal for the effective mitigation of water-stress damage to the physiochemical characteristics and growth of maize.

2.
Plant Physiol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865493

RESUMO

Salt stress presents a major obstacle to maize (Zea mays L.) production globally, impeding its growth and development. In this study, we aimed to identify salt-tolerant maize varieties through evaluation using multivariate analysis and shed light on the role of ionome, antioxidant capacity, and autophagy in salt tolerance. We investigated multiple growth indices, including shoot fresh weight, shoot dry weight, plant height, chlorophyll content, electrolyte leakage, potassium and sodium contents, and potassium-to-sodium ratio in 20 maize varieties at the V3 stage under salt stress (200 mM NaCl). The results showed significant differences in the growth indices, accompanied by a wide range in their coefficient of variation, suggesting their suitability for screening salt tolerance. Based on D values, clustering analysis categorized the 20 varieties into four distinct groups. TG88, KN20, and LR888 (group I) emerged as the most salt-tolerant varieties, while YD9, XD903, and LH151 (group IV) were identified as the most sensitive. TG88 showcased nutrient preservation and redistribution under salt stress, surpassing YD9. It maintained nitrogen and iron levels in roots while YD9 experienced decreases. TG88 redistributed more nitrogen, zinc, and potassium to its leaves, outperforming YD9. TG88 preserved sulfur levels in both roots and leaves, unlike YD9. Additionally, TG88 demonstrated higher enzymatic antioxidant capacity (SOD, POD, APX, and GR) both at the enzyme and gene expression levels, upregulation of autophagy-related (ATG) genes (ZmATG6, ZmATG8a, and ZmATG10), and increased autophagic activity. Overall, this study offers insights into accurate maize varieties evaluation methods and the physiological mechanisms underlying salt tolerance and identifies promising materials for further research.

3.
BMC Plant Biol ; 24(1): 434, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773357

RESUMO

Intercropping, a widely adopted agricultural practice worldwide, aims to increase crop yield, enhance plant nutrient uptake, and optimize the utilization of natural resources, contributing to sustainable farming practices on a global scale. However, the underlying changes in soil physio-chemical characteristics and enzymatic activities, which contribute to crop yield and nutrient uptake in the intercropping systems are largely unknown. Consequently, a two-year (2021-2022) field experiment was conducted on the maize/soybean intercropping practices with/without nitrogen (N) fertilization (i.e., N0; 0 N kg ha-1 and N1; 225 N kg ha-1 for maize and 100 N kg ha-1 for soybean ) to know whether such cropping system can improve the nutrients uptake and crop yields, soil physio-chemical characteristics, and soil enzymes, which ultimately results in enhanced crop yield. The results revealed that maize intercropping treatments (i.e., N0MI and N1MI) had higher crop yield, biomass dry matter, and 1000-grain weight of maize than mono-cropping treatments (i.e., N0MM, and N1MM). Nonetheless, these parameters were optimized in N1MI treatments in both years. For instance, N1MI produced the maximum grain yield (10,105 and 11,705 kg ha-1), biomass dry matter (13,893 and 14,093 kg ha-1), and 1000-grain weight (420 and 449 g) of maize in the year 2021 and 2022, respectively. Conversely, soybean intercropping treatments (i.e., N0SI and N1SI) reduced such yield parameters for soybean. Also, the land equivalent ratio (LER) and land equivalent ratio for N fertilization (LERN) values were always greater than 1, showing the intercropping system's benefits in terms of yield and improved resource usage. Moreover, maize intercropping treatments (i.e., N0MI and N1MI) and soybean intercropping treatments (i.e., N0SI and N1SI) significantly (p < 0.05) enhanced the nutrient uptake (i.e., N, P, K, Ca, Fe, and Zn) of maize and soybean, however, these nutrients uptakes were more prominent in N1MI and N1SI treatments of maize and soybean, respectively in both years (2021 and 2022) compared with their mono-cropping treatments. Similarly, maize-soybean intercropping treatments (i.e., N0MSI and N1MSI) significantly (p < 0.05) improved the soil-based N, P, K, NH4, NO3, and soil organic matter, but, reduced the soil pH. Such maize-soybean intercropping treatments also improved the soil enzymatic activities such as protease (PT), sucrose (SC), acid phosphatase (AP), urease (UE), and catalase (CT) activities. This indicates that maize-soybean intercropping could potentially contribute to higher and better crop yield, enhanced plant nutrient uptake, improved soil nutrient pool, physio-chemical characteristics, and related soil enzymatic activities. Thus, preferring intercropping to mono-cropping could be a preferable choice for ecologically viable agricultural development.


Assuntos
Produção Agrícola , Glycine max , Nitrogênio , Solo , Zea mays , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Solo/química , China , Produção Agrícola/métodos , Nitrogênio/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Agricultura/métodos , Fertilizantes , Nutrientes/metabolismo , Biomassa
4.
Front Plant Sci ; 14: 1193666, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575931

RESUMO

Drought is one of the most significant abiotic stress threatening to crop production worldwide. Soybean is a major legume crop with immense economic significance, but its production is highly dependent on optimum rainfall or abundant irrigation. As the global climate changes, it is more important to find solutions to make plants more resilient to drought. The prime aimed of the study is to investigate the effect of melatonin on drought tolerance in soybean and its potential mechanisms. Soybean seedlings were treated with 20% polyethylene glycol 6000 (PEG 6000) and subjected to osmotic stress (14 days) with or without 100 µM melatonin treatment. Our results revealed that melatonin supplementation significantly mitigated PEG-induced growth retardation and increased water absorption ability. Foliar application of melatonin also increased gas exchange and the chlorophyll fluorescence attributes by the mitigation of the osmotic-induced reduction of the reaction activity of photosystems I and II, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), electron transport activity, and photosynthetic efficiency. In addition, PEG-induced elevated production of reactive oxygen species (ROS) and malondialdehyde (MDA) content were significantly reversed by melatonin treatment. Equally important, melatonin boosted the antioxidant activities of soybean plants. Moreover, osmotic stress substantially increased abscisic acid (ABA) accumulation in roots and leaves, while melatonin-received plant leaves accumulated less ABA but roots content higher ABA. Similarly, melatonin significantly suppressed ABA biosynthesis and signaling gene expression in soybean exposed to drought stress. Furthermore, osmotic stress significantly suppressed plasmalemma (GmPIPs) and tonoplast aquaporin (GmTIPs) genes expression, and their transcript abundance was up-regulated by melatonin co-addition. Taken together, our results indicated that melatonin potentially improves drought tolerance of soybean through the regulation of ABA and aquaporin gene expression, increasing photosynthetic efficiency as well as enhancing water uptake efficiency.

5.
Plant Physiol ; 193(1): 339-355, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37249039

RESUMO

Drought and flooding are the two most important environmental factors limiting maize (Zea mays L.) production globally. This study aimed to investigate the physiological mechanisms and accurate evaluation indicators and methods of maize germplasm involved in drought and flooding stresses. The twice replicated pot experiments with 60 varieties, combined with the field validation experiment with 3 varieties, were conducted under well-watered, drought, and flooding conditions. Most varieties exhibited stronger tolerance to drought than flooding due to higher antioxidant enzyme activities, osmotic adjustment substances, and lower reactive oxygen species. In contrast, flooding stress resulted in higher levels of reactive oxygen species (particularly O2-), ascorbate peroxidase, catalase, peroxidase, and soluble sugars but lower levels of superoxide dismutase, proline, and soluble protein compared with well-watered conditions. Superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, proline, soluble sugars, and protein contents, in addition to plant height, leaf area/plant, and stem diameter, were accurate and representative indicators for evaluating maize tolerance to drought and flooding stresses and could determine a relatively high mean forecast accuracy of 100.0% for the comprehensive evaluation value. A total of 4 principal components were extracted, in which different principal components played a vital role in resisting different water stresses. Finally, the accuracy of the 3 varieties screened by multivariate analysis was verified in the field. This study provides insights into the different physiological mechanisms and accurate evaluation methods of maize germplasm involved in drought and flooding stresses, which could be valuable for further research and breeding.


Assuntos
Secas , Zea mays , Catalase/metabolismo , Zea mays/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Estresse Fisiológico , Melhoramento Vegetal , Antioxidantes/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Peroxidase/metabolismo , Superóxido Dismutase/metabolismo , Água/metabolismo , Prolina/metabolismo , Análise Multivariada , Açúcares/metabolismo
6.
Plant Physiol ; 191(4): 2301-2315, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36660817

RESUMO

Drought stress (DS) challenges sustainable agriculture production by limiting crop growth and development. The objective of the study was to evaluate the effect of melatonin-priming on enzymatic and non-enzymatic antioxidant defense mechanisms and its relation with leaf ultrastructure and stomatal traits in maize (Zea mays L) seedlings under DS (PEG-6000). DS drastically decreased seed germination, plant growth, and leaf chlorophyll content due to excessive reactive oxygen species (ROS) production. Melatonin-priming significantly (P < 0.05) increased seed germination, root length, shoot length, fresh seedling weight, proline content, total soluble protein content, sugar content, chlorophyll content, and stomatal aperture size by 101%, 30%, 133%, 51%, 22%, 59%, 54%, 20%, and 424%, compared to no priming (NP) under DS, respectively. Similarly, priming improved leaf ultrastructure and reduced the amount of chlorophyll loss and oxidative damage in maize seedlings. Melatonin seed priming with 500 µM melatonin (M2) greatly increased superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione, and ascorbate (AsA) activity, by 65%, 63%, 94%, 41%, and 55% compared to NP under DS and by 0.26%, 8%, 33%, 42%, and 15% under no-stress (NS), respectively. Melatonin-priming also reduced malondialdehyde content, electrolyte leakage, hydrogen peroxide (H2O2) content, and superoxide anion (O2-) content by 26%, 31%, 31%, and 33% compared to NP under DS and by 8%, 18%, 10%, and 11% under NS, respectively. In response to DS, melatonin-priming also stabilized the chloroplast structure, sustained cell expansion, protected cell walls, and greatly improved stomatal traits, including stomatal number, length, and width. Our results suggest that melatonin-priming improves drought tolerance in maize seedlings by alleviating the negative effect of ROS.


Assuntos
Antioxidantes , Melatonina , Antioxidantes/metabolismo , Plântula/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Zea mays/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Resistência à Seca , Peróxido de Hidrogênio/metabolismo , Clorofila/metabolismo
7.
Environ Pollut ; 317: 120637, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36400144

RESUMO

Physiological changes and genome-wide alteration in gene expression were performed in soybean (Glycine max [L.] Merr.) roots exposed to AsⅢ (25 µmol/L) alone and supplemented with selenium nanoparticles (SeNPs) at the concentration of 10 and 25 µmol/L at the V2 growth stage. Excessive arsenic in the root zone poses a potential threat to soybean yield, particularly to roots, due to the limited translocation of AsIII from root to shoot in the case of soybean. We hypothesized that SeNPs can relieve AsⅢ toxicity to soybean root by reducing the AsⅢ uptake and regulating the internal tolerance mechanism of the plants. Results accomplished that SeNPs had positive impact on soybean dry weight and roots parameters under AsⅢ stress. Then, we further evaluated physiological indexes, whole genome transcriptomic analysis and quantitative real-time PCR to elucidate the underlying mechanism of AsⅢ tolerance under SeNPs supplementation. Under the condition of AsⅢ-stress, SeNPs exposure significantly reduced the electrolyte leakage, O2-•, H2O2 and MDA accumulation while increasing the antioxidants level. The RNA-seq dataset revealed total of 5819 up and 7231 down expressed DEGs across all libraries. The number of exclusively regulated genes were higher under As + SeNP10 (4909) treatment than in the AsⅢ-alone (4830) and As + SeNP25 (3311) treatments. The KEGG and GO analyses revealed that stress responsive DEGs such as glutathione S-transferase, glutathione peroxidase, ascorbate, glutaredoxin, thioredoxin, and phytochelatins synthase are responsible for AsⅢ tolerance under the SeNPs supplementation. Similarly, sulfate transporter, and ABC transporters (ATP-binding cassettes) expression were induced, and aquaporin channels related DEGs expression were reduced under SeNPs application in AsⅢ exposure condition. Furthermore, the expression of molecular chaperones (HSP) and transcription factors (MYB, bZIP, bHLH, and HSFs) were increased in SeNPs treatment groups. These results provide vital information of AsⅢ tolerance mechanism in response to SeNPs in soybean. We suggest that functional characterization of these genes will help us learn more about the SeNPs responsive arsenic tolerance mechanism in soybean.


Assuntos
Arsênio , Selênio , Antioxidantes/metabolismo , Selênio/farmacologia , Selênio/metabolismo , Transcriptoma , Glycine max , Arsênio/metabolismo , Fatores de Transcrição/metabolismo , Peróxido de Hidrogênio/metabolismo , Raízes de Plantas/metabolismo , Metais/metabolismo , Estresse Fisiológico/genética
8.
Front Plant Sci ; 13: 1014640, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267939

RESUMO

Maize-soybean intercropping is practiced worldwide because of some of the anticipated advantages such as high crop yield and better utilization of resources (i.e., water, light, nutrients and land). However, the shade of the maize crop has a detrimental effect on the growth and yield of soybean under the maize-soybean intercropping system. Hence, this experiment was conducted to improve the shade tolerance of such soybean crops with optimal nitrogen (N) fertilization combined with foliar application of iron (Fe) and molybdenum (Mo). The treatments comprised five (5) maize-soybean intercropping practices: without fertilizer application (F0), with N fertilizer application (F1), with N fertilizer combined with foliar application of Fe (F2), with N fertilizer coupled with foliar application of Mo (F3) and with N fertilizer combined with foliar application of Fe and Mo (F4). The findings of this study showed that maize-soybean intercropping under F4 treatment had significantly (p< 0.05) increased growth indices such as leaf area (cm2), plant height (cm), stem diameter (mm), stem strength (g pot-1), and internode length (cm) and yield indices (i.e., No of pods plant-1, grain yield (g plant-1), 100-grain weight (g), and biomass dry matter (g plant-1)) of the soybean crop. Moreover, intercropping under F4 treatment enhanced the chlorophyll SPAD values by 26% and photosynthetic activities such as Pn by 30%, gs by 28%, and Tr by 28% of the soybean crops, but reduced its CO2 by 11%. Furthermore, maize-soybean intercropping under F4 treatment showed improved efficiency of leaf chlorophyll florescence parameters of soybean crops such as Fv/Fm (26%), qp (17%), ϕPSII (20%), and ETR (17%), but reduced NPQ (12%). In addition, the rubisco activity and soluble protein content of the soybean crop increased by 18% in maize-soybean intercropping under F4 treatment. Thus, this suggested that intercropping under optimal N fertilization combined with foliar application of Fe and Mo can improve the shade tolerance of soybean crops by regulating their chlorophyll content, photosynthetic activities, and the associated enzymes, thereby enhancing their yield and yield traits.

9.
Front Plant Sci ; 13: 988055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119633

RESUMO

Photosynthetic rate (Pn) and photosynthetic nitrogen use efficiency (PNUE) are the two important factors affecting the photosynthesis and nutrient utilization of plant leaves. However, the effect of N fertilization combined with foliar application of Fe on the Pn and PNUE of the maize crops under different planting patterns (i.e., monocropping and intercropping) is elusive. Therefore, this experiment was conducted to determine the effect of N fertilization combined with foliar application of Fe on the photosynthetic characteristics, PNUE, and the associated enzymes of the maize crops under different planting patterns. The results of this study showed that under intercropping, maize treated with N fertilizer combined with foliar application of Fe had not only significantly (p < 0.05) improved physio-agronomic indices but also higher chlorophyll content, better photosynthetic characteristics, and related leaf traits. In addition, the same crops under such treatments had increased photosynthetic enzyme activity (i.e., rubisco activity) and nitrogen metabolism enzymes activities, such as nitrate reductase (NR activity), nitrite reductase (NiR activity), and glutamate synthase (GOGAT activity). Consequently, intercropping enhanced the PNUE and soluble sugar content of the maize crops, thus increasing its yield compared with monocropping. Thus, these findings suggest that intercropping under optimal N fertilizer application combined with Fe foliation can improve the chlorophyll content and photosynthetic characteristics of maize crops by regulating the associated enzymatic activities. Consequently, this results in enhanced PNUE, which eventually leads to better growth and higher yield in the intercropping system. Thus, practicing intercropping under optimal nutrient management (i.e., N and Fe) could be crucial for better growth and yield, and efficient nitrogen use efficiency of maize crops.

10.
Sci Total Environ ; 853: 158370, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36044952

RESUMO

Abundant nitrogen (N) fertilization is needed for maize (Zea mays L.) production in China because of its huge residual biomass return. However, excessive N fertilization has a negative impact on the soil ecosystem and environment, which contributes to climate change. Soil incorporation of maize residues is a well-known practice for reducing chemical N fertilization without compromising maize yield and soil fertility. Thus, residues incorporation has the capacity to minimize N fertilization uses and hence mitigate soil greenhouse gas emissions by improving plant N uptake and use efficiency. There is still a research gap regarding the effects of maize residues incorporation on maize yield, soil fertility, greenhouse gas emissions, and plant N and carbon (C) contents. Therefore, we conducted a field experiment during spring and autumn involving four different N fertilization rates (N0, N200, N250, and N300 kg N ha-1), with and without maize residues incorporation, to evaluate grain yield, soil fertility, plant N and C contents, and greenhouse gas emissions (GHGs). Compared to N0, N fertilizer application at 300 kg N ha-1 with residues incorporation significantly increased area-scaled global warming potential (GWP) compared to other N fertilization rates in both spring and autumn seasons, but soil nutrient contents and plant N and C contents were not statistically different from the N250 treatment. In contrast, the N recovery use efficiency (NRUE), physiological N use efficiency (PNUE), and agronomic N use efficiency (ANUE) were significantly lower in the N300 treatment than in the lower N treatment groups. Nitrous oxide (N2O) and carbon dioxide (CO2) fluxes, area-scaled GWP, and greenhouse gas intensity (GHGI) were significantly lower in the N200 treatment with straw incorporation than the N250 and N300 treatments of the traditional planting system. Thus, we concluded that N200 treatment with residues incorporation is optimal for improving grain yield, soil fertility, plant N uptake, and mitigating greenhouse gas emissions.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Solo/química , Fertilizantes/análise , Zea mays , Óxido Nitroso/análise , Nitrogênio , Aquecimento Global , Dióxido de Carbono , Ecossistema , Agricultura , Fertilização , China
11.
Front Microbiol ; 13: 868862, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547151

RESUMO

Sustainable reduction of fertilization with technology acquisition for improving soil quality and realizing green food production is a major strategic demand for global agricultural production. Introducing legume (LCCs) and/or non-legume cover crops (NLCCs) during the fallow period before planting main crops such as wheat and corn increases surface coverage, retains soil moisture content, and absorbs excess mineral nutrients, thus reducing pollution. In addition, the cover crops (CCs) supplement the soil nutrients upon decomposition and have a green manure effect. Compared to the traditional bare land, the introduction of CCs systems has multiple ecological benefits, such as improving soil structure, promoting nutrient cycling, improving soil fertility and microbial activity, controlling soil erosion, and inhibiting weed growth, pests, and diseases. The residual decomposition process of cultivated crops after being pressed into the soil will directly change the soil carbon (C) and nitrogen (N) cycle and greenhouse gas emissions (GHGs), and thus affect the soil microbial activities. This key ecological process determines the realization of various ecological and environmental benefits of the cultivated system. Understanding the mechanism of these ecological environmental benefits provides a scientific basis for the restoration and promotion of cultivated crops in dry farming areas of the world. These findings provide an important contribution for understanding the mutual interrelationships and the research in this area, as well as increasing the use of CCs in the soil for better soil fertility, GHGs mitigation, and improving soil microbial community structure. This literature review studies the effects of crop biomass and quality on soil GHGs emissions, microbial biomass, and community structure of the crop cultivation system, aiming to clarify crop cultivation in theory.

12.
Front Microbiol ; 13: 823963, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369510

RESUMO

Soil sustainability is based on soil microbial communities' abundance and composition. Straw returning (SR) and nitrogen (N) fertilization influence soil fertility, enzyme activities, and the soil microbial community and structure. However, it remains unclear due to heterogeneous composition and varying decomposition rates of added straw. Therefore, the current study aimed to determine the effect of SR and N fertilizer application on soil organic carbon (SOC), total nitrogen (TN), urease (S-UE) activity, sucrase (S-SC) activity, cellulose (S-CL) activity, and bacterial, fungal, and nematode community composition from March to December 2020 at Guangxi University, China. Treatments included two planting patterns, that is, SR and traditional planting (TP) and six N fertilizer with 0, 100, 150, 200, 250, and 300 kg N ha-1. Straw returning significantly increased soil fertility, enzymatic activities, community diversity, and composition of bacterial and fungal communities compared to TP. Nitrogen fertilizer application increased soil fertility and enzymes and decreased the richness of bacterial and fungal communities. In SR added plots, the dominated bacterial phyla were Proteobacteria, Acidobacterioia, Nitrospirae, Chloroflexi, and Actinobacteriota; whereas fungal phyla were Ascomycota and Mortierellomycota and nematode genera were Pratylenchus and Acrobeloides. Co-occurrence network and redundancy analysis (RDA) showed that TN, SOC, and S-SC were closely correlated with bacterial community composition. It was concluded that the continuous SR and N fertilizer improved soil fertility and improved soil bacterial, fungal, and nematode community composition.

13.
BMC Plant Biol ; 22(1): 159, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35361113

RESUMO

Nitrate nitrogen (NO3-_N) leaching increased with nitrogen (N) fertilization under high water supply to the field negatively affected the maize growth and performance. This study aimed to understand the mechanisms of NO3-_N leaching on a biochemical basis and its relationship with plant performance with 5 different doses (0, 200, 250, 300, 350 kg N ha- 1) of N fertilizers under low (60%; LW) and high (80%; HW) water holding capacity. Soil and plant enzymes were observed at different growth stages (V9, R1, R3, and R6) of the maize, whereas the leachates were collected at 10-days intervals from the sowing date. The LW had 10.15% lower NO3-_N leachate than HW, with correspondence increases in grain yield (25.57%), shoot (17.57%) and root (28.67%) dry matter. Irrespective of the irrigation water, RubisCo, glutamine synthase (GS), nitrate reductase (NR), nitrite reductase (NiR), and glutamate synthase (GOGAT) activities increased with increasing N fertilizer up to the V9 growth stage and decreased with approaching the maturity stage (R6) in maize. In HW irrigation, soil total N, GOGAT, soil nitrate (NO3-_N), leached nitrate (LNO3-_N), root N (RN), leaf N (LN) were positively correlated with N factors suggesting the higher losses of N through leaching (11.3%) compared to LW irrigation. However, the malondialdehyde (MDA), hydrogen peroxide (H2O2), superoxide (O2-), and proline were negatively correlated with the other enzymatic activities both under LW and HW irrigation. Thus, minimizing the NO3-_N leaching is possibly correlated with the LW and N300 combination without compromising the yield benefit and improving enzyme activities.


Assuntos
Nitrogênio , Solo , Irrigação Agrícola , Peróxido de Hidrogênio , Nitratos/análise , Nitrogênio/análise , Água/análise , Zea mays
14.
Antioxidants (Basel) ; 11(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35326162

RESUMO

Melatonin is effective in modulating metabolism and regulating growth and development in many plants under biotic and abiotic stress. However, there is no systematic quantification of melatonin effects on maize growth, gas exchange, chlorophyll content, and the antioxidant defense system. A meta-analysis was conducted on thirty-two currently available published articles to evaluate the effect of stress types, study types, and maize varieties on response ratio (lnRR++) of "melatonin" to "control (no melatonin)" on plant growth, enzyme activities, gas exchange parameters, and photosynthetic pigments. Our findings revealed that melatonin application overall increased plant height, leaf area, root length, fresh and dry root weight and shoot weight, superoxide dismutase (SOD), peroxide (POD), catalase (CAT), ascorbate peroxidase (APX), soluble sugar and protein, photosynthetic rate, stomatal conductance, transpiration rate, chlorophyll, and carotenoid in maize leaf under stress conditions. In contrast, melatonin application decreased the levels of hydrogen peroxide (H2O2), superoxide anion (O2-), malondialdehyde (MDA), and electrolyte leakage. The categorical meta-analysis demonstrated that melatonin application to chilling stress resulted in higher SOD activity followed by salt stress. Melatonin application to all stress types resulted in higher POD, CAT and APX activities, except Cd stress, which had no effect on POD and decreased CAT by 38% compared to control. Compared to control, melatonin resulted in lower reactive oxygen species (ROS) and electrolyte leakage under no stress, Cd, drought, salt, lead, heat, and chilling stress in all study types (pot, growth chamber, hydroponic, and field), except O2 content which was not affected in pot and growth chamber studies. It was concluded that melatonin alleviates oxidative damage by improving stress tolerance, regulating the antioxidant defense system, and increasing leaf chlorophyll content compared to control.

15.
Antioxidants (Basel) ; 11(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35204247

RESUMO

Melatonin plays an important role in numerous vital life processes of animals and has recently captured the interests of plant biologists because of its potent role in plants. As well as its possible contribution to photoperiodic processes, melatonin is believed to act as a growth regulator and/or as a direct free radical scavenger/indirect antioxidant. However, identifying a precise concentration of melatonin with an optimum nitrogen level for a particular application method to improve plant growth requires identification and clarification. This work establishes inimitable findings by optimizing the application of melatonin with an optimum level of nitrogen, alleviating the detrimental effects of drought stress in maize seedlings. Maize seedlings were subjected to drought stress of 40-45% field capacity (FC) at the five-leaf stage, followed by a soil drenching of melatonin 100 µM and three nitrogen levels (200, 250, and 300 kg ha-1) to consider the changes in maize seedling growth. Our results showed that drought stress significantly inhibited the physiological and biochemical parameters of maize seedlings. However, the application of melatonin with nitrogen remarkably improved the plant growth attributes, chlorophyll pigments, fluorescence, and gas exchange parameters. Moreover, melatonin and nitrogen application profoundly reduced the reactive oxygen species (ROS) accumulation by increasing maize antioxidant and nitrogen metabolism enzyme activities under drought-stress conditions. It was concluded that the mitigating potential of 100 µM melatonin with an optimum level of nitrogen (250 kg N ha-1) improves the plant growth, photosynthetic efficiency, and enzymatic activity of maize seedling under drought-stress conditions.

16.
Front Microbiol ; 13: 833758, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185852

RESUMO

Irrigation and nitrogen (N) fertilization rates are widely used to increase crop growth and yield and promote the sustainable production of the maize crop. However, our understanding of irrigation and N fertilization in the soil microenvironment is still evolving, and further research on soil bacterial communities under maize crop with irrigation and N management in subtropical regions of China is needed. Therefore, we evaluated the responses of two irrigation levels (low and high irrigation water with 60 and 80% field capacity, respectively) and five N fertilization rates [i.e., control (N0), N200 (200 kg N ha-1), N250 (250 kg N ha-1), N300 (300 kg N ha-1), and N350 (350 kg N ha-1)] on soil bacterial communities, richness, and diversity. We found that both irrigation and N fertilization significantly affected bacterial richness, diversity index, and number of sequences. Low irrigation with N300 treatment has significantly higher soil enzymes activities, soil nutrient content, and bacterial alpha and beta diversity than high irrigation. In addition, the Proteobacteria, Actinobacteriota, Chloroflexi, and Firmicutes were the dominant bacterial phyla under both irrigation regimes. The acidic phosphates, acidic invertase, ß-glucosidase, catalase, cellulase, and urease were positively correlated with the Shannon index under both low and high irrigation. Therefore, low irrigation improves soil nutrient utilization by boosting soil enzyme activity, directly affecting soil bacterial communities. It was concluded that greater soil nutrients, enzyme activities with higher bacterial diversity are the main indicators of soil reactivity to low irrigation water and N300 for maintaining soil fertility and soil microbial community balance.

17.
Biology (Basel) ; 11(1)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35053096

RESUMO

Waterlogging is one of the serious abiotic stresses that inhibits crop growth and reduces productivity. Therefore, investigating efficient waterlogging mitigation measures has both theoretical and practical significance. The objectives of the present research were to examine the efficiency of melatonin and KNO3 seed soaking and foliar application on alleviating the waterlogging inhibited growth performance of maize seedlings. In this study, 100 µM melatonin and different levels (0.25, 0.50 and 0.75 g) of potassium nitrate (KNO3) were used in seed soaking and foliar applications. For foliar application, treatments were applied at the 7th leaf stage one week after the imposition of waterlogging stress. The results showed that melatonin with KNO3 significantly improved the plant growth and biochemical parameters of maize seedlings under waterlogging stress conditions. However, the application of melatonin with KNO3 treatments increased plant growth characteristics, chlorophyll content, and the net photosynthetic rate at a variable rate under waterlogging stress. Furthermore, melatonin with KNO3 treatments significantly reduced the accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA), and it decreased the activity of pyruvate decarboxylase and alcohol dehydrogenase, while increasing enzymatic activities and soluble protein content of maize seedlings under waterlogging stress conditions. Overall, our results indicated that seed soaking with 100 µM melatonin and 0.50 g KNO3 was the most effective treatment that significantly improved the plant growth characteristics, chlorophyll content, photosynthetic rate, and enzymatic activity of maize seedling under waterlogging conditions.

18.
Front Plant Sci ; 13: 1077948, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684768

RESUMO

Introduction: Surplus use of chemical nitrogen (N) fertilizers to increase agricultural Q9 production causes severe problems to the agricultural ecosystem and environment. This is contrary to N use efficiency and sustainable agricultural production. Methods: Hence, this study was designed to investigate the effect of maizesoybean intercropping on N uptake, N yield, N utilization use efficiency, and the associated nitrogen assimilatory enzymes of maize crops under different N fertilization for two consecutive years 2021-2022. Results: The findings of the study showed that intercropping at the optimal N rate (N1) (250 kg N ha-1) increased significantly maize grain yield by 30 and 34%, residue yield by 30 and 37%, and 100-grain weight by 33 and 39% in the year 2021 and 2022, respectively. As compared with mono-cropping, at this optimal N rate, the respective increase (of maize's crop N yield indices) for 2021 and 2022 were 53 and 64% for grain N yield, and 53 and 68% for residue N yield. Moreover, intercropping at N1 resulted in higher grain N content by 28 and 31%, residue N content by 18 and 22%, and total N uptake by 65 and 75% in 2021 and 2022, respectively. The values for the land equivalent ratio for nitrogen yield (LERN) were greater than 1 in intercropping, indicating better utilization of N under the intercropping over mono-cropping. Similarly, intercropping increased the N assimilatory enzymes of maize crops such as nitrate reductase (NR) activity by 19 and 25%, nitrite reductase (NiR) activity by 20 and 23%, and glutamate synthase activity (GOGAT) by 23 and 27% in 2021 and 2022, respectively. Consequently, such increases resulted in improved nitrogen use efficiency indices such as N use efficiency (NUE), partial factor nitrogen use efficiency (PFNUE), nitrogen uptake efficiency (NUpE), and nitrogen agronomic efficiency (NAE) under intercropping than mono-cropping. Conclusion: Thus, this suggests that maize-soybean intercropping under optimal N fertilization can improve the nitrogen status and nitrogen use efficiency of maize crops by regulating the nitrogen assimilatory enzymes, thereby enhancing its growth and yield. Therefore, prioritizing intercropping over an intensive mono-cropping system could be a better option for sustainable agricultural production.

19.
Ecotoxicol Environ Saf ; 225: 112738, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34481352

RESUMO

Arsenic is a significant food safety and environmental concern due to its mutagenic and carcinogenic effect on living organism. Soybean (Glycine max [L.] Merrill) is a global staple crop grown intensively in arsenic-contaminated regions of the world (e.g., Southern Province of China). Therefore, the objective of this study was to investigate whether Se-NPs and/or ZnO-NPs could be used as an eco-friendly and efficient amendment to reduce arsenic uptake and toxicity in soybean. Ten-days-old seedling, grown in vermiculite, were transferred to hydroponic media and further grown till V2 growth stage appeared. AsV (25 µM Na2HAsO4) stressed plants were treated with ZnONP (25 µM ZnO) and SeNP (25 µM Se) separately and in combination, which were grown for another 10 d. The result demonstrated that arsenic-treated soybean plants displayed a reduction in photosynthetic efficiency, increased proline and glycine betaine accumulation in tissues, and altered antioxidant activity compared to an untreated control. The application of zinc oxide and selenium nanoparticles, both independently and in tandem, reduced arsenic stress in root and shoot tissues and rescued plant health. This was reflected through increased levels of reduced glutathione content, ascorbic acid, and various photosynthesis- and antioxidant-relevant enzymes. In addition, nanoparticle-treated soybean plants displayed higher expression of defense- and detoxification-related genes compared to controls. Cellular toxicants (i.e., oxidized glutathione, reactive oxygen species, and malondialdehyde) were reduced upon nanoparticle treatment. These data collectively suggest that selenium and zinc oxide nanoparticles may be a solution to ameliorate arsenic toxicity in agricultural soils and crop plants.


Assuntos
Nanopartículas , Óxido de Zinco , Antioxidantes , Nanopartículas/toxicidade , Fotossíntese , Raízes de Plantas , Plântula , Glycine max , Óxido de Zinco/toxicidade
20.
BMC Plant Biol ; 21(1): 368, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384391

RESUMO

BACKGROUND: Melatonin is considered a potential plant growth regulator to enhance the growth of plants and increase tolerance to various abiotic stresses. Nevertheless, melatonin's role in mediating stress response in different plant species and growth cycles still needs to be explored. This study was conducted to understand the impact of different melatonin concentrations (0, 50, 100, and 150 µM) applied as a soil drench to maize seedling under drought stress conditions. A decreased irrigation approach based on watering was exposed to maize seedling after drought stress was applied at 40-45% of field capacity. RESULTS: The results showed that drought stress negatively affected the growth behavior of maize seedlings, such as reduced biomass accumulation, decreased photosynthetic pigments, and enhanced the malondialdehyde and reactive oxygen species (ROS). However, melatonin application enhanced plant growth; alleviated ROS-induced oxidative damages by increasing the photosynthetic pigments, antioxidant enzyme activities, relative water content, and osmo-protectants of maize seedlings. CONCLUSIONS: Melatonin treatment also enhanced the stomatal traits, such as stomatal length, width, area, and the number of pores under drought stress conditions. Our data suggested that 100 µM melatonin application as soil drenching could provide a valuable foundation for improving plant tolerance to drought stress conditions.


Assuntos
Melatonina/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Antioxidantes/metabolismo , Biomassa , Clorofila/metabolismo , Secas , Estresse Oxidativo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/ultraestrutura , Proteínas de Plantas/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/ultraestrutura , Prolina/metabolismo , Espécies Reativas de Oxigênio , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Açúcares/metabolismo , Zea mays/enzimologia , Zea mays/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...