Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bioenerg Biomembr ; 56(2): 171-180, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38244155

RESUMO

To verify the protective effect of circDNAJB6 on Bronchopulmonary dysplasia (BPD) cell and animal models and to explore the possible mechanism of its protective effect. The function of circDNAJB6 was investigated at the cell and animal levels. Nuclear and Cytoplasmic RNA extraction kits and fluorescence in situ hybridization (FISH) were used to explore the distribution of circDNAJB6 in cells, and the potential mechanism of circDNAJB6 was verified by q-PCR, luciferase assays and rescue experiments.CircDNAJB6 is abundant in breast milk exosomes. Overexpression of circDNAJB6 can ameliorate damage in BPD models caused by hyperoxia exposure in vivo and in vitro. Mechanistically, circDNAJB6 can target the downstream DNAJB6 gene and promote the transcription of DNAJB6, exertive a protective effect on the experimental BPD model. Our results showed that circDNAJB6 alleviated damage and inhibited the proliferation of alveolar epithelial cells in the BPD model by promoting transcription of parent gene DNAJB6. Human milk exosome-derived circDNAJB6 provides new directions for preventing and treating BPD.


Assuntos
Displasia Broncopulmonar , Exossomos , Animais , Recém-Nascido , Feminino , Humanos , Displasia Broncopulmonar/genética , Leite Humano , Animais Recém-Nascidos , Exossomos/genética , Hibridização in Situ Fluorescente , Transcrição Gênica , Modelos Animais de Doenças , Proteínas do Tecido Nervoso/genética , Chaperonas Moleculares/genética , Proteínas de Choque Térmico HSP40/genética
2.
iScience ; 26(9): 107509, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37636035

RESUMO

Long-term exposure to hyperoxia can leading to the bronchopulmonary dysplasia (BPD). The progression of BPD is primarily driven by the apoptosis of alveolar epithelial cells, and the regulation of autophagy has an impact on apoptosis. This study aims to investigate the therapeutic potential and underlying mechanism of an autophagy-promoting peptide (Tat-P) in ameliorating BPD. In vitro experiments demonstrated that Tat-P promoted autophagy and partially prevented apoptosis caused by exposure to hyperoxia. Further investigation into the mechanism revealed that Tat-P competitively binds to GAPR1, displacing the Beclin1 protein and thereby inhibiting the apoptosis. In vivo experiments conducted on Sprague-Dawley pups exposed to high oxygen levels demonstrated that Tat-P promoted autophagy and reduced apoptosis in lung tissues and ameliorated BPD-related phenotypes. Our findings elucidate the underlying mechanisms and effects of Tat-P in enhancing autophagy and preventing apoptosis. This study presents an approach for the prevention and treatment of BPD.

3.
Comput Struct Biotechnol J ; 21: 2241-2252, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035553

RESUMO

Although multi-parent populations (MPPs) integrate the advantages of linkage and association mapping populations in the genetic dissection of complex traits and especially combine genetic analysis with crop breeding, it is difficult to detect small-effect quantitative trait loci (QTL) for complex traits in multiparent advanced generation intercross (MAGIC), nested association mapping (NAM), and random-open-parent association mapping (ROAM) populations. To address this issue, here we proposed a multi-locus linear mixed model method, namely mppQTL, to detect QTLs, especially small-effect QTLs, in these MPPs. The new method includes two steps. The first is genome-wide scanning based on a single-locus linear mixed model; the P-values are obtained from likelihood-ratio test, the peaks of negative logarithm P-value curve are selected by group-lasso, and all the selected peaks are regarded as potential QTLs. In the second step, all the potential QTLs are placed on a multi-locus linear mixed model, all the effects are estimated using expectation-maximization empirical Bayes algorithm, and all the non-zero effect vectors are further evaluated via likelihood-ratio test for significant QTLs. In Monte Carlo simulation studies, the new method has higher power in QTL detection, lower false positive rate, lower mean absolute deviation for QTL position estimate, and lower mean squared error for the estimate of QTL size (r2) than existing methods because the new method increases the power of detecting small-effect QTLs. In real dataset analysis, the new method (19) identified five more known genes than the existing three methods (14). This study provides an effective method for detecting small-effect QTLs in any MPPs.

4.
Biol Pharm Bull ; 46(5): 672-683, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37121693

RESUMO

Evidence suggests that CXC motif chemokines are involved in neuronal injury and inflammatory processes. Bioinformatics analysis by using data from the Gene Expression Omnibus (GEO) database was performed and identified CXC motif chemokine ligands (CXCLs) as associated with diabetic peripheral neuropathy (DPN). The present study focused on CXC motif chemokine ligand 2 (CXCL2), and the role and potential mechanisms of CXCL2 in DPN were investigated. The DPN rat model was generated by streptozotocin (STZ) injection in vivo, and high-glucose (HG)-stimulated Schwann cell RSC96 was considered a cell model of DPN in vitro. Neuropathic symptoms of DPN were explored by neurological tests and histological examinations. DPN rats showed a decreased level of motor nerve conduction velocity (MNCV) along with typical histological changes. CXCL2 expression was significantly increased in STZ-induced DPN rat sciatic nerve and HG-induced RSC96 cells. Functionally, CXCL2 knockdown inhibited cell apoptosis and inflammation activation under diabetic conditions in vitro and in vivo. CXCL2 knockdown increased cell viability in HG-treated RSC96 cells and reduced apoptosis concerning the decreased expression of cleaved Caspase 3/9. In addition, CXCL2 knockdown protected against NOD-like receptor protein 3 (NLRP3) inflammasome activation and reduced levels of pro-inflammatory cytokines, interleukin (IL)-1ß and IL-18. The repressive effects of CXCL2 knockdown on inflammasome activation under HG conditions were significantly abolished by treatment of the NLRP3 activator nigericin. In conclusion, these results indicated that CXCL2 knockdown exhibited amelioration of hyperglycemia-induced DPN by inhibiting cell apoptosis and NLRP3 inflammasome activation, suggesting that targeting CXCL2 might be a potential strategy for DPN treatment.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Ratos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ligantes , Neuropatias Diabéticas/metabolismo , Proteínas NLR , Quimiocinas CXC/farmacologia , Apoptose
5.
FASEB J ; 36(12): e22667, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36421020

RESUMO

The regulation of muscle glucose utilization has significant potential for the treatment of type 2 diabetes mellitus (T2DM) and obesity. Heat shock factor 1 (HSF1) is involved in cellular metabolism and regulation of muscle metabolism. However, it is unclear how HSF1 regulates muscle glucose metabolism. In the present study, the development of obesity in mice was associated with HSF1 downregulation. Serum samples and muscle biopsies were obtained from obese and healthy humans. Fasting glucose and insulin levels and the homeostasis model assessment of insulin resistance value showed that obesity was associated with insulin resistance. The skeletal muscle level of HSF1 was decreased in obese and ob/ob mice. HSF1 was selectively over-expressed in the skeletal muscles of high fat diet (HFD)-fed mice. Muscle HSF1 over-expression successfully triggered glycolytic-to-oxidative myofiber switch and increased fatty acid metabolism and insulin sensitivity in the skeletal muscles of HFD-fed mice. Moreover, HSF1 improved energy expenditure and blocked muscle accumulation of triglycerides in HFD-fed mice. Consequently, muscle HSF1 mitigated the impaired muscle insulin signaling and insulin resistance in HFD-fed mice. In conclusion, T2DM and obesity in HFD-fed mice may be treated with selective HSF1-directed programming of exercise-like effects in skeletal muscle. These findings may aid the development of a new therapeutic approach for obesity and T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Camundongos , Animais , Resistência à Insulina/fisiologia , Glucose/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Insulina/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo
6.
J Cell Mol Med ; 26(15): 4169-4182, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35833257

RESUMO

Human breast milk (HBM) effectively prevents and cures neonatal bronchopulmonary dysplasia (BPD). Exosomes are abundant in breast milk, but the function of HBM-derived exosomes (HBM-Exo) in BPD is still unclear. This study was to investigate the role and mechanism of HBM-Exo in BPD. Overall lung tissue photography and H&E staining showed that HBM-Exo improved the lung tissue structure collapse, alveolar structure disorder, alveolar septum width, alveolar number reduction and other injuries caused by high oxygen exposure. Immunohistochemical results showed that HBM-Exo improved the inhibition of cell proliferation and increased apoptosis caused by hyperoxia. qPCR and Western blot results also showed that HBM-Exo improved the expression of Type II alveolar epithelium (AT II) surface marker SPC. In vivo study, CCK8 and flow cytometry showed that HBM-Exo improved the proliferation inhibition and apoptosis of AT II cells induced by hyperoxia, qPCR and immunofluorescence also showed that HBM-Exo improved the down-regulation of SPC. Further RNA-Seq results in AT II cells showed that a total of 88 genes were significantly different between the hyperoxia and HBM-Exo with hyperoxia groups, including 24 up-regulated genes and 64 down-regulated genes. KEGG pathway analysis showed the enrichment of IL-17 signalling pathway was the most significant. Further rescue experiments showed that HBM-Exo improved AT II cell damage induced by hyperoxia through inhibiting downstream of IL-17 signalling pathway (FADD), which may be an important mechanism of HBM-Exo in the prevention and treatment of BPD. This study may provide new approach in the treatment of BPD.


Assuntos
Displasia Broncopulmonar , Exossomos , Hiperóxia , Animais , Animais Recém-Nascidos , Apoptose , Displasia Broncopulmonar/etiologia , Modelos Animais de Doenças , Exossomos/metabolismo , Feminino , Humanos , Hiperóxia/genética , Recém-Nascido , Interleucina-17/metabolismo , Pulmão/metabolismo , Leite Humano/metabolismo , Ratos
7.
Mol Plant ; 15(4): 630-650, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35202864

RESUMO

Although genome-wide association studies are widely used to mine genes for quantitative traits, the effects to be estimated are confounded, and the methodologies for detecting interactions are imperfect. To address these issues, the mixed model proposed here first estimates the genotypic effects for AA, Aa, and aa, and the genotypic polygenic background replaces additive and dominance polygenic backgrounds. Then, the estimated genotypic effects are partitioned into additive and dominance effects using a one-way analysis of variance model. This strategy was further expanded to cover QTN-by-environment interactions (QEIs) and QTN-by-QTN interactions (QQIs) using the same mixed-model framework. Thus, a three-variance-component mixed model was integrated with our multi-locus random-SNP-effect mixed linear model (mrMLM) method to establish a new methodological framework, 3VmrMLM, that detects all types of loci and estimates their effects. In Monte Carlo studies, 3VmrMLM correctly detected all types of loci and almost unbiasedly estimated their effects, with high powers and accuracies and a low false positive rate. In re-analyses of 10 traits in 1439 rice hybrids, detection of 269 known genes, 45 known gene-by-environment interactions, and 20 known gene-by-gene interactions strongly validated 3VmrMLM. Further analyses of known genes showed more small (67.49%), minor-allele-frequency (35.52%), and pleiotropic (30.54%) genes, with higher repeatability across datasets (54.36%) and more dominance loci. In addition, a heteroscedasticity mixed model in multiple environments and dimension reduction methods in quite a number of environments were developed to detect QEIs, and variable selection under a polygenic background was proposed for QQI detection. This study provides a new approach for revealing the genetic architecture of quantitative traits.


Assuntos
Estudo de Associação Genômica Ampla , Oryza , Estudo de Associação Genômica Ampla/métodos , Genótipo , Herança Multifatorial/genética , Oryza/genética , Fenótipo
8.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35152287

RESUMO

Detecting small and linked quantitative trait loci (QTLs) and QTL-by-environment interactions (QEIs) for complex traits is a difficult issue in immortalized F2 and F2:3 design, especially in the era of global climate change and environmental plasticity research. Here we proposed a compressed variance component mixed model. In this model, a parametric vector of QTL genotype and environment combination effects replaced QTL effects, environmental effects and their interaction effects, whereas the combination effect polygenic background replaced the QTL and QEI polygenic backgrounds. Thus, the number of variance components in the mixed model was greatly reduced. The model was incorporated into our genome-wide composite interval mapping (GCIM) to propose GCIM-QEI-random and GCIM-QEI-fixed, respectively, under random and fixed models of genetic effects. First, potentially associated QTLs and QEIs were selected from genome-wide scanning. Then, significant QTLs and QEIs were identified using empirical Bayes and likelihood ratio test. Finally, known and candidate genes around these significant loci were mined. The new methods were validated by a series of simulation studies and real data analyses. Compared with ICIM, GCIM-QEI-random had 29.77 ± 18.20% and 24.33 ± 10.15% higher average power, respectively, in 0.5-3.0% QTL and QEI detection, 43.44 ± 9.53% and 51.47 ± 15.70% higher average power, respectively, in linked QTL and QEI detection, and identified 30 more known genes for four rice yield traits, because GCIM-QEI-random identified more small genes/loci, being 2.69 ± 2.37% for additional genes. GCIM-QEI-random was slightly better than GCIM-QEI-fixed. In addition, the new methods may be extended into backcross and genome-wide association studies. This study provides effective methods for detecting small-effect and linked QTLs and QEIs.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Teorema de Bayes , Mapeamento Cromossômico , Interação Gene-Ambiente , Fenótipo
9.
Aging (Albany NY) ; 13(8): 11218-11233, 2021 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-33820870

RESUMO

Human breast milk (HBM) provides essential nutrients for newborn growth and development, and contains a variety of biologically active ingredients that can affect gastrointestinal tract and immune system development in breastfed infants. HBM also contains mRNAs, microRNAs and lncRNAs, most of which are encapsulated in milk-derived exosomes and exhibit various important infant development related biological functions. While previous studies have shown that exosomal circRNAs are involved in the intestinal epithelial cells' proliferation and repair. However, the effect of HBM exosomal circRNAs on intestinal development is not clear. In this study, we identified 6756 circRNAs both in preterm colostrum (PC) and term colostrum (TC), of which 66 were upregulated, and 42 were downregulated (|fold change>2|, p < 0.05) in PC. Pathway analysis showed that the VEGF signalling pathway was involved, and network analysis revealed that the differentially expressed circRNAs bound various miRNAs. Further analyses showed that has_circRNA_405708 and has_circRNA_104707 were involved in the VEGF signalling pathway, and that they all bound various mirRNAs. Exosomes found in preterm colostrum (PC) and term colostrum (TC) promoted VEGF protein expression and induced the proliferation and migration of small intestinal epithelial cells (FHCs). Exosomal circRNAs found in human colostrum (HC) binding to related miRNAs may regulate VEGF signalling, and intestinal development.


Assuntos
Colostro/metabolismo , Intestinos/crescimento & desenvolvimento , RNA Circular/metabolismo , Transdução de Sinais/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto , Aleitamento Materno , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/genética , Desenvolvimento Infantil , Colostro/citologia , Meios de Cultura/metabolismo , Células Epiteliais/fisiologia , Exossomos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Prematuro/crescimento & desenvolvimento , Idade Materna , MicroRNAs/metabolismo , Gravidez , RNA Circular/isolamento & purificação , Adulto Jovem
10.
Mol Nutr Food Res ; 65(10): e2000845, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33715285

RESUMO

SCOPE: Human milk can prevent the development of necrotizing enterocolitis (NEC). Human milk is rich in cargo-carrying exosomes that participate in intercellular communication. This study investigated the effects of term and preterm human milk-derived exosomes, and elucidated their lipid expression profiles. METHODS AND RESULTS: Milk from healthy mothers is collected who have delivered full-term or preterm infants, and exosomes are isolated and quantified. Administration of term and preterm milk exosomes significantly enhances epithelial proliferation and migration in vitro, and ameliorates the severity of NEC in vivo. A total of 395 lipids are identified in term and preterm human milk-derived exosomes. Bioinformatics analysis and western blotting reveal that top 50 lipids regulate intestinal epithelial cell function via the Extracellular-Signal-Regulated Kinase/Mitogen Activated Protein Kinase (ERK/MAPK) pathway. CONCLUSION: This study reveals for the first time the lipidomic complexities in exosomes derived from preterm and term milk. The results provide novel mechanistic insight on how human milk prevents the development of NEC.


Assuntos
Exossomos/química , Exossomos/fisiologia , Lipídeos/análise , Lipídeos/fisiologia , Leite Humano/citologia , Animais , Animais Recém-Nascidos , Proliferação de Células , Enterocolite Necrosante/prevenção & controle , Enterócitos/efeitos dos fármacos , Enterócitos/fisiologia , Exossomos/ultraestrutura , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Microscopia Eletrônica , Ratos
11.
Artigo em Inglês | MEDLINE | ID: mdl-33198330

RESUMO

The occurrence of environmental endocrine disrupting chemicals (EDCs) in aquatic environments has caused extensive concern. Graphene-like magnetic sawdust biochar was synthesized using potassium ferrate (K2FeO4) to make activated sawdust biochar and applied for the removal of 17-estradiol (E2). The characterization showed that the surface morphology of five graphene-like magnetic sawdust biochars prepared with different preparation conditions were quite different. The specific surface area and pore structure increased with the increment of K2FeO4 addition. The results have shown that graphene-like magnetic sawdust biochar (1:1/900 °C) had the best removal on E2. The experimental results indicated that pseudo-first-order kinetic model and the Langmuir model could describe the adsorption process well, in which the equilibrium adsorption capacity (qe,1) of 1:1/900 °C were 59.18 mg·g-1 obtained from pseudo-first-order kinetic model and the maximum adsorption capacity (qmax) of 1:1/900 °C were 133.45 mg·g-1 obtained from Langmuir model at 298K. At the same time, lower temperatures, the presence of humic acid (HA), and the presence of NaCl could be regulated to change the adsorption reaction in order to remove E2. Adsorption capacity was decreased with the increase of solution pH because pH value not only changed the surface charge of graphene-like magnetic sawdust biochar, but also affected the E2 in the water. The possible adsorption mechanism for E2 adsorption on graphene-like magnetic sawdust biochar was multifaceted, involving chemical adsorption and physical absorption, such as H-bonding, π-π interactions, micropore filling effects, and electrostatic interaction. To sum up, graphene-like magnetic sawdust biochar was found to be a promising absorbent for E2 removal from water.


Assuntos
Carvão Vegetal , Técnicas de Química Analítica , Grafite , Poluentes Químicos da Água , Adsorção , Carvão Vegetal/química , Técnicas de Química Analítica/métodos , Estradiol/isolamento & purificação , Grafite/química , Cinética , Fenômenos Magnéticos , Poluentes Químicos da Água/isolamento & purificação
12.
Biochem Biophys Res Commun ; 533(1): 181-187, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-32958248

RESUMO

In recent years, the obese and overweight population has increased rapidly, which has become a worldwide public health problem. However, effective medication is lacking. Our previous study identified a novel peptide, PDBSN (GLSVADLAESIMKNL), that could significantly restrict adipocyte differentiation in vitro, but its in vivo function has not been determined. Thus, in this study, we encapsulated the peptide into liposomes attached with two ligands (visceral-adipose-tissue-targeting peptide and cell-penetrating peptide) to improve stability and specificity. We then tested the peptide's function in HFD (high-fat diet)-induced obese mice and found that PDBSN could reduce weight gain and improve insulin resistance as well as lipid homeostasis. These results suggest that PDBSN may be a potential candidate for anti-obesity drug discovery.


Assuntos
Fármacos Antiobesidade/uso terapêutico , L-Lactato Desidrogenase/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/tratamento farmacológico , Fragmentos de Peptídeos/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Fármacos Antiobesidade/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Ativação Enzimática/efeitos dos fármacos , Glucose/metabolismo , Homeostase/efeitos dos fármacos , L-Lactato Desidrogenase/administração & dosagem , Lipossomos , Masculino , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Fragmentos de Peptídeos/administração & dosagem
13.
Chemosphere ; 250: 126268, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32234619

RESUMO

The effectiveness of rice waste biochars on heavy metal and metalloid abatement and detoxification was investigated using comprehensive studies based on As and Cd immobilization, bioaccumulation in tubifex, and microbial community changes in contaminated sediment. The remediation effects of biochars produced at different pyrolytic temperatures (400-700 °C) were evaluated. Bioaccumulation of heavy metal and metalloid in the tubifex tissue and change of indigenous microbial community under treatment of different biochars were assessed. Biochars produced at 700 °C exhibited greater effect on decreasing the concentrations of As and Cd in aqueous phase, and TCLP extractable and bioavailable metal(loid) in solid phase of sediment. The concentration of As and Cd in water phase decreased by 26%-89% and 22%-71% under the treatment of straw biochar, and decreased by 13%-92% and 5%-64% under the treatment of rice husk biochar, respectively. As and Cd contents in the tubifex tissue were positively correlated with their concentrations in aqueous phase. High-temperature biochars significantly reduced metal(loid) bioaccumulation in tubifex. The richness and biodiversity of microbial community were both greater in all biochars remediated sediment compared to non-treated sediment. These results indicated that rice waste biochars could effectively inhibit the bio-availability and toxicity of heavy metal and metalloid in sediment, and the higher-temperature biochar exhibited better performance.


Assuntos
Arsênio/química , Cádmio/química , Carvão Vegetal/química , Recuperação e Remediação Ambiental , Disponibilidade Biológica , Inativação Metabólica , Metais Pesados , Oryza , Pirólise , Temperatura , Água
14.
Biomed Pharmacother ; 125: 109975, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32036223

RESUMO

Necrotizing enterocolitis (NEC) is one of the most common and devastating gastrointestinal diseases in preterm newborns, and its underlying mechanisms remain unclear. Non-coding RNAs (ncRNAs) play critical roles in intestinal diseases; however, little is known about their roles in the development of NEC. To gain a deeper understanding of the pathophysiological mechanism of NEC, long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and mRNAs were detected in an NEC rat model. In total, 1820 lncRNAs, 118 miRNAs and 929 mRNAs were differentially expressed in NEC group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that these molecules were enriched in apoptosis, autophagic cell death, TLR4 signaling pathway, Notch signaling pathway, and mTOR signaling pathway. These pathways are thought to be closely associated with NEC. Furthermore, a lncRNA-miRNA interaction network was constructed, and four of the novel, differentially expressed lncRNAs with large changes were randomly verified using quantitative polymerase chain reaction (qPCR). The GO and KEGG pathway analysis of these four lncRNAs showed that they were associated with the negative regulation of TLR4 signaling pathway and Notch signaling pathway. In conclusion, our study revealed that these differentially expressed lncRNAs may participate in the development of NEC via interactions with miRNAs and may serve as possible biomarkers and target genes in NEC.


Assuntos
Enterocolite Necrosante/metabolismo , MicroRNAs , RNA Longo não Codificante , Transcriptoma , Animais , Regulação da Expressão Gênica , Redes Reguladoras de Genes , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
15.
Life Sci ; 236: 116737, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31505194

RESUMO

AIMS: The purpose of this study was to investigate the pathophysiology and discover novel predictors of neonatal respiratory distress syndrome (NRDS) from a peptidomics perspective. MAIN METHODS: Comparative profiling of umbilical cord blood from NRDS and control patients was performed by liquid chromatography tandem mass spectrometry technology. The underlying biological functions of the differentially expressed peptides (DEPs) were predicted by Gene Ontology (GO) and KEGG pathway analyses. The interactions of DEPs and their precursor proteins were explored by ingenuity pathway analysis (IPA). The sources and stability of DEPs were determined by online databases, including UniProt, SMART and ProtParam tool. KEY FINDINGS: A total of 251 DEPs were identified, of which 139 peptides were upregulated, and 112 peptides were downregulated (fold change ≥2.0, P < 0.05). These DEPs were predicted to be associated with respiratory failure, atelectasis, and morphogenesis of endothelial cells. These processes indicated that DEPs may play a role in NRDS. Among them, eleven stable DEPs might be used as preclinical biomarkers. SIGNIFICANCE: Our findings improve our understanding of NRDS and facilitate the discovery of candidate diagnostic biomarkers for NRDS from the perspective of peptidomics.


Assuntos
Biomarcadores/sangue , Sangue Fetal/metabolismo , Fragmentos de Peptídeos/sangue , Síndrome do Desconforto Respiratório do Recém-Nascido/diagnóstico , Estudos de Casos e Controles , Humanos , Recém-Nascido , Prognóstico , Síndrome do Desconforto Respiratório do Recém-Nascido/sangue
16.
Environ Toxicol Chem ; 38(10): 2337-2347, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31343777

RESUMO

Biochar has frequently been used for the treatment of heavy metal pollution in water and soil; its effect on contaminated sediments requires further research. To improve the ability of biochar to immobilize heavy metals in sediment, we prepared a functionalized biochar/attapulgite composite by pyrolysis of the clay attapulgite and zinc chloride-pretreated rice straw biomass. Compared with the original biochar, the biochar/attapulgite composite had a large increase in specific surface area, pore volume, oxygen-containing functional groups, and cation exchange capacity. Biochar effectively improved the dispersibility of attapulgite as a matrix. The results showed that the biochar/attapulgite composite effectively reduced the bioavailable fraction of arsenic (As) and cadmium (Cd) in river sediment, which was a great improvement compared with the raw biochar. After the sediment was treated with different biochar/attapulgite composites, the concentrations of As and Cd in the overlying water and the porewater, and the content of acid-extractable and toxicity characteristic leaching procedure (TCLP)-extractable As and Cd in the solid phase of the sediment decreased significantly. Both zinc chloride activation and attapulgite improved As and Cd immobilization in sediment when we used the biochar/attapulgite composite. The results suggest that biochar/attapulgite composite can be used as an efficient in situ sorbent amendment to improve the heavy metal immobilization ability of the sediment. Environ Toxicol Chem 2019;38:2337-2347. © 2019 SETAC.


Assuntos
Arsênio/análise , Cádmio/análise , Carvão Vegetal/química , Argila/química , Sedimentos Geológicos/química , Rios/química , Disponibilidade Biológica , Biomassa , Compostos de Magnésio/química , Metais Pesados/análise , Oryza , Espectroscopia Fotoeletrônica , Compostos de Silício/química , Poluentes do Solo/análise , Poluentes Químicos da Água/análise
17.
Mol Nutr Food Res ; 63(13): e1801247, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31067344

RESUMO

SCOPE: Human breast milk has been shown to prevent necrotizing enterocolitis (NEC). Although exosomes have been identified in breast milk, their function and components have not been fully addressed. This study is conducted to elucidate the differences in peptidomic complexities between preterm and term milk exosomes. METHODS AND RESULTS: Breast milk samples are collected from healthy lactating mothers who have delivered term and preterm infants. Exosomes are separated and quantified. The protective effects of purified exosomes against NEC are investigated both in vitro and in vivo. The peptidomic complexities in term and preterm milk exosomes are analyzed by iTRAQ LC-MS/MS to screen differentially expressed exosomal peptides. Preterm milk exosomes administration significantly enhances proliferation and migration of intestinal epithelial cells compared with term milk exosomes. A total of 70 peptides are found to be significantly modulated in preterm milk samples compared to term milk samples. Of these, 47 peptides are upregulated, and 23 peptides are downregulated. Bioinformatics analysis suggests several potential regulatory roles of the altered peptides in intestinal epithelial cell function. CONCLUSION: These results reveal the differences for the first time in peptidomic complexities between preterm and term milk exosomes. Milk exosome administration might be a promising prevention for NEC.

18.
J Mol Endocrinol ; 62(3): 137-148, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753134

RESUMO

Obesity is a major risk factor for metabolic diseases, while adipocyte differentiation is closely related to obesity occurrence. Long noncoding RNAs (lncRNAs) are a unique class of transcripts in regulation of various biological processes. Using lncRNA microarray, we found lncRNA AC092159.2 was highly expressed in differentiated HPA-v and located ~247 bp upstream of the TMEM18, which was associated with BMI and obesity. We aimed to explore the role of AC092159.2 in adipogenesis and the underlying mechanisms. The effects of AC092159.2 gain- and loss-of-function on HPA-v adipogenesis were determined with lentivirus and siRNA-mediated cell transduction, respectively. Lipid accumulation was evaluated by oil red O staining; the expression of AC092159.2, TMEM18 and several adipogenesis makers in HPA-v were analyzed by qPCR/Western blot. We found that the expression of AC092159.2 gradually increased during HPA-v differentiation, and its expression in omental adipose tissue was positively related with BMI among 48 human subjects. Overexpression of AC092159.2 promoted adipocytes differentiation while knockdown of it led to an adipogenic defect. Moreover, the expression of AC092159.2 and TMEM18 were positively correlated during adipogenic differentiation. AC092159.2 overexpression boosted TMEM18 expression while AC092159.2 knockdown restrained TMEM18 expression. Further rescue experiments showed that TMEM18 knockdown partially restrained adipogenic differentiation in AC092159.2 overexpressed HPA-v and adipogenic defect caused by AC092159.2 knockdown could be rescued by TMEM18 overexpression. Luciferase reporter assays revealed that AC092159.2 had a transcriptional activation effect on TMEM18. We concluded that lncRNA AC092159.2 promoted human adipocytes differentiation possibly by regulating TMEM18.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Proteínas de Membrana/metabolismo , RNA Longo não Codificante/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Humanos , Proteínas de Membrana/genética , RNA Longo não Codificante/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
19.
J Cell Physiol ; 234(9): 15510-15526, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30741421

RESUMO

It has been shown that human breast milk (HBM) is an important nutrient for the growth and development of newborns. Currently, peptide drugs provide promising regimes in neonatal disease treatment, especially peptides from HBM that exhibit multiple functions within cells. To explore the potential biological function peptides among the colostrum, transition and mature milk from mother of extremely low birth weight children (the samples were collected from Women's Hospital of Nanjing Medical University from December 2016 to February 2017). A total of 3,182 nonredundant peptides were identified and compared among colostrum, transitional and mature milk using liquid chromatography/mass spectrometry technology, and the numbers and fragments of peptides were various. The isoelectric point and molecular weight analysis of the differentially expressed peptides basically accord with the range of mass spectrometry identification (<3 kDa). Gene Ontology analysis and Pathway analysis, restriction sites analysis, as well as bioinformatics analysis showed that these differentially expressed peptides enriched a variety of biological processes. We identified several putative peptides that might have bioactive effects in diseases and development of newborns, which will inform further functional investigations. Our preliminary research provided a better understanding of the function of peptides during the newborn periods. Furthermore, it laid a foundation for discovering new peptide drugs in neonatal disease treatment.

20.
J Cell Physiol ; 234(3): 1987-1995, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30317609

RESUMO

Proper left-right (LR) axis establishment is critical for organogenesis in vertebrates. Previously, we reported that zinc finger transcription factors zinc finger transcription factor 1 (znfl1s) are expressed in the tailbud and axial mesoderm in zebrafish. However, a role of znfl1s in LR axis development has not been demonstrated. Here, we discovered that the knockdown of znfl1s using morpholino (MO) in whole embryos or dorsal forerunner cells (DFCs) interrupted LR asymmetry and normal development of the heart, liver, and pancreas. Whole-embryo knockdown of znfl1s by MO or clustered regularly interspaced short palindromic repeat (CRISPR) interference (CRISPRi) resulted in the absent expression of nodal gene spaw and Nodal signaling-related genes lft1, lft2, and pitx2c in the left lateral plate mesoderm (LPM), and Spaw, Lft1, Lft2, and Pitx2c play important roles in LR axis development in zebrafish. However, specific knockdown of znfl1s in DFCs resulted in random expression of spaw, lft1, lft2, and pitx2c. Knockdown of znfl1s led to abnormal cilia formation by the downregulation of fgfr1a and foxj1a expression. The expression of spaw, lft1, lft2, and pitx2c was partially rescued by the overexpression of fgfr1a mRNA in znfl1s morphants. Taken together, our results suggest that znfl1s regulate laterality development in zebrafish embryos through controlling the expression of fgfr1a.


Assuntos
Padronização Corporal/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Cílios/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Organizadores Embrionários/embriologia , Organizadores Embrionários/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...