Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Diabetes ; 12(7): 939-953, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34326947

RESUMO

Diabetic retinopathy (DR) is one of the major causes of visual impairment and irreversible blindness in developed regions. Aside from abnormal angiogenesis, inflammation is the most specific and might be the initiating factor of DR. As a key participant in inflammation, interferon-gamma (IFN-γ) can be detected in different parts of the eye and is responsible for the breakdown of the blood-retina barrier and activation of inflammatory cells and other cytokines, which accelerate neovascularization and neuroglial degeneration. In addition, IFN-γ is involved in other vascular complications of diabetes mellitus and angiogenesis-dependent diseases, such as diabetic nephropathy, cerebral microbleeds, and age-related macular degeneration. Traditional treatments, such as anti-vascular endothelial growth factor agents, vitrectomy, and laser photocoagulation therapy, are more effective for angiogenesis and not tolerable for every patient. Many ongoing clinical trials are exploring effective drugs that target inflammation. For instance, IFN-α acts against viruses and angiogenesis and is commonly used to treat malignant tumors. Moreover, IFN-α has been shown to contribute to alleviating the progression of DR and other ocular diseases. In this review, we emphasize the roles that IFNs play in the pathogenesis of DR and discuss potential clinical applications of IFNs in DR, such as diagnosis, prognosis, and therapeutic treatment.

2.
Int J Ophthalmol ; 13(9): 1477-1483, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32953589

RESUMO

AIM: To conduct a Meta-analysis for the change of interleukin-10 (IL-10) concentration in vitreous samples of patients with diabetic retinopathy (DR). METHODS: Systemic search for literature was conducted from the databases of PubMed, Web of Science and Cochrane Library by August 2019. Statistical analyses including standard mean difference (SMD) and its 95% confidence interval (CI) were performed by using RevMan 5.3 software. RESULTS: Totally 194 studies were screened and finally 11 studies were included in the Meta-analysis. The concentration of IL-10 in the DR group was higher than in the control group (P=0.003, SMD: 0.77, 95%CI: 0.25-1.28). Significant heterogeneity was found among all studies (P<0.00001, I 2=92%). The subgroup analysis showed that the concentration of IL-10 increased in vitreous samples from patients with DR compared to the non-DR controls (P=0.004, SMD: 1.44, 95%CI: 0.46-2.42). Moreover, the concentration of IL-10 in samples of proliferative diabetic retinopathy (PDR) patients was significantly higher than that of non-proliferative diabetic retinopathy (NPDR) patients (P=0.01, SMD: 0.61, 95%CI: 0.13-1.08). CONCLUSION: The vitreal concentration of IL-10 is significantly increased in patients with DR. Further studies are needed to reveal the mechanisms of IL-10 in DR.

3.
Int J Ophthalmol ; 12(5): 739-745, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31131231

RESUMO

AIM: To identify disease-related miRNAs in retinas of mice with oxygen-induced retinopathy (OIR), and to explore their potential roles in retinal pathological neovascularization. METHODS: The retinal miRNA expression profile in mice with OIR and room air controls at postnatal day 17 (P17) were determined through miRNA microarray analysis. Several miRNAs were significantly up- and down-regulated in retinas of mice with OIR compared to controls by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Two databases including Targetscan7.1 and MirdbV5 were used to predict target genes that associated with those significantly altered miRNAs in retinas of mice with OIR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were also conducted to identify possible biological functions of the target genes. RESULTS: In comparison with room air controls, 3 and 8 miRNAs were significantly up- and down-regulated, respectively, in retinas of mice with OIR. The qRT-PCR data confirmed that mmu-miR-350-3p and mmu-miR-202-3p were significantly up-regulated, while mmu-miR-711 and mmu-miR-30c-1-3p were significantly down-regulated in mice with OIR compared to controls. GO analysis demonstrated that the identified target genes were related to functions such as cellular macromolecule metabolic process. KEGG pathway analysis showed a group of pathways, such as Wnt signaling pathway, transcriptional misregulation in cancer, Mucin type O-glycan biosynthesis, and mitogen-activated protein kinase (MAPK) signaling pathway might be involved in pathological process of retinal neovascularization. CONCLUSION: Our findings suggest that the differentially expressed miRNAs in retinas of mice with OIR might provide potential therapeutic targets for treating retinal neovascularization.

4.
Int J Ophthalmol ; 12(2): 212-218, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809475

RESUMO

AIM: To investigate the regulation and mechanisms of periostin expression in retinal Müller glia, and to explore the relevance to retinal neovascularization. METHODS: The oxygen-induced retinopathy (OIR) mouse model and the human Moorfield/Institute of Ophthalmology-Müller 1 (MIO-M1) cell line were used in the study. Immunofluorescence staining was used to determine the distribution and expression of periostin and a Müller glial cell marker glutamine synthetase (GS). Cytokines TNF-α and IFN-γ were added to stimulate the MIO-M1 cells. ShRNA was used to knockdown periostin expression in MIO-M1 cells. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) was conducted to assess the mRNA expression of periostin. RESULTS: Immunofluorescence staining showed that periostin was expressed by MIO-M1 Müller glia. GS-positive Müller glia and periostin increased in OIR retinas, and were partially overlaid. The stimulation of TNF-α and IFN-γ reduced the mRNA expression of periostin significantly and dose-dependently in MIO-M1 cells. Knockdown of periostin reduced mRNA expression of vascular endothelial growth factor A (VEGFA) in MIO-M1 cells, while VEGFA expression was not changed in periostin knock-out OIR retinas. CONCLUSION: Müller glia could be one of the main sources of periostin in the retina, and might contribute to the pathogenesis of retinal neovascularization. Proinflammatory cytokines TNF-α and IFN-γ attenuate the periostin expression in retinal Müller glia, which provides a potential and novel method in treating retinal neovascular diseases.

5.
Int J Ophthalmol ; 10(12): 1902-1908, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29259911

RESUMO

Macrophages are involved in angiogenesis, and might also contribute to the pathogenesis of intraocular neovascular diseases. Recent studies indicated that macrophages exert different functions in the process of intraocular neovascularization, and the polarization of M1 and M2 phenotypes plays extremely essential roles in the diverse functions of macrophages. Moreover, a large number of cytokines released by macrophages not only participate in macrophage polarization, but also associate with retinal and choroidal neovascular diseases. Therefore, macrophage might be considered as a novel therapeutic target to the treatment of pathological neovascularization in the eye. This review mainly summarizes diverse roles of macrophages and discusses the possible mechanisms in retinal and choroidal neovascularization.

7.
Int J Ophthalmol ; 10(4): 646-651, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28503441

RESUMO

Gene therapy is a potentially effective treatment for retinal degenerative diseases. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has been developed as a new genome-editing tool in ophthalmic studies. Recent advances in researches showed that CRISPR/Cas9 has been applied in generating animal models as well as gene therapy in vivo of retinitis pigmentosa (RP) and leber congenital amaurosis (LCA). It has also been shown as a potential attempt for clinic by combining with other technologies such as adeno-associated virus (AAV) and induced pluripotent stem cells (iPSCs). In this review, we highlight the main points of further prospect of using CRISPR/Cas9 in targeting retinal degeneration. We also emphasize the potential applications of this technique in treating retinal degenerative diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...