Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37571182

RESUMO

The friction stir welding (FSW) of thermoplastic polymers is gradually receiving attention because of its advantages including high efficiency and pollution-free manufacturing. The extrusion-based additive manufacturing (EAM) of polymers has also become one of the main processing methods for thermoplastic parts. In this paper, a hybrid manufacturing method for the FSW process and EAM technology is proposed and explored. The effects of the FSW process using two different welding tools on the mechanical behaviors of 3D printing polymer parts were compared and investigated and the corresponding mechanism was analyzed. The results show that the appropriate welding tool is beneficial for eliminating the anisotropy and decreasing the porosity of 3D-printed parts. Therefore, the improving effects of the FSW process on the mechanical behaviors of the EAM parts are verified. The mechanism was attributed to the high-speed rotation of the welding tool with the appropriate shape, which can promote the flow of polymer melt in the welding region, leading to the formation of dense structures caused by the entanglement of the molecular chains. This study may provide some assistance in modern industrial manufacturing for the processing of large custom components.

2.
Nanomaterials (Basel) ; 9(5)2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096704

RESUMO

In this study, a series of poly(l-lactide) and (3-amino)-propylheptaisobutyl cage silsesquioxane (PLLA-AMPOSS) intermediates were first fabricated using single-arm in situ solution polymerization of LLA monomers and AMPOSS nanoparticles with different contents, 0.02-1.00 mol%. Then, the PLLA-AMPOSS intermediate with 0.5 mol% AMPOSS was selected as a representative and investigated by nuclear magnetic resonance (NMR) and X-ray diffraction (XRD). Afterwards, it was added into the pure PLLA with different mass fractions. Finally, the thermal behavior, crystallization kinetics, morphological characteristics, and mechanical properties of the obtained PLLA/PLLA-AMPOSS nanocomposites were carefully measured and investigated by differential scanning calorimetry (DSC), polarizing microscopy (POM), scanning electron microscopy (SEM), and tensile test. After comparing the PLLA-AMPOSS intermediate and PLLA/AMPOSS blend, the results show that the ring-open polymerization of PLLA-AMPOSS intermediate was successful. The results also show that the existence of PLLA-AMPOSS has a strong influence on the crystallization behavior of PLLA/PLLA-AMPOSS composites, which can be attributed to the heterogeneous nucleation effect of PLLA-AMPOSS. In addition, it was also found from the tensile test results that the addition of the PLLA-AMPOSS nanofiller improved the tensile strength and strain at break of PLLA/PLLA-AMPOSS nanocomposites. All of these results indicate the good nucleating effect of PLLA-AMPOSS and that the AMPOSS disperses well in the PLLA/PLLA-AMPOSS nanocomposites. A conclusion can be drawn that the selective nucleating agent and the combined method of in situ ring-opening polymerization and physical blending are feasible and effective.

3.
Polymers (Basel) ; 11(2)2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30960284

RESUMO

To improve the foaming behavior of a common linear polypropylene (PP) resin, polycarbonate (PC) was blended with PP, and three different grafted polymers were used as the compatibilizers. The solid and foamed samples of the PP/PC 3:1 blend with different compatibilizers were first fabricated by melt extrusion followed by injection molding (IM) with and without a blowing agent. The mechanical properties, thermal features, morphological structure, and relative rheological characterizations of these samples were studied using a tensile test, dynamic mechanical analyzer (DMA), scanning electron microscope (SEM), and torque rheometer. It can be found from the experimental results that the influence of the compatibility between the PP and PC phases on the foaming behavior of PP/PC blends is substantial. The results suggest that PC coupling with an appropriate compatibilizer is a potential method to improve the foamability of PP resin. The comprehensive effect of PC and a suitable compatibilizer on the foamability of PP can be attributed to two possible mechanisms, i.e., the partial compatibility between phases that facilitates cell nucleation and the improved gas-melt viscosity that helps to form a fine foaming structure.

4.
Materials (Basel) ; 12(4)2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769771

RESUMO

Poly(cyclohexylene dimethylene cyclohexanedicarboxylate) (PCCE) is a kind of copolyester polymer with excellent toughness and outstanding flexibility. However, the opacity caused by crystallization limits the widespread application of PCCE in products that have transparency requirements. The effects of 1,3:2,4-Di-p-methylbenzylidene sorbitol (MDBS) on the crystallization behavior, transparency, and mechanical properties of a PCCE melt were investigated via differential scanning calorimetry (DSC), spectrophotometry, and tensile testing. The results suggest that the transparency and mechanical properties of PCCE drastically improve and that its crystallization behaviors are obviously influenced by the addition of MDBS. PCCE with 0.6 wt% MDBS was then selected as a representative sample, and its thermal behavior and crystal morphology were further investigated by DSC, hot-staged polarizing microscopy (HSPLM), and scanning electron microscopy (SEM). The quantitative results suggest that, compared to neat PCCE resin, PCCE/MDBS has a lower isothermal and nonisothermal crystallization activation energy, which indicates a rapid crystallization process. The results also show that, compared to the pure PCCE melt, the PCCE/MDBS melt experiences a greater increase in the number of crystals and a greater decrease in the crystal size during cooling. The acceleration of the crystallization process and reduction in crystal size can be both attributed to the nucleation effect of the MDBS. In conclusion, because the addition of the nucleating agent improves the transparency and tensile properties of PCCE by adjusting and controlling its thermal and crystallization behaviors, the proposed technique of using a compounding nucleating agent to control crystallization is therefore suitable for PCCE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...