Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(8): 20833-20848, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36260227

RESUMO

In this study, the corrosion behavior of Q235 carbon steel (CS) under a Bacillus cereus (B. cereus) inoculum in simulated cooling water was evaluated. The weight loss study proved B. cereus inoculum possessed anticorrosion efficiencies of 92.84% and 73.88% for 3-day and 14-day rotation tests, respectively. The electrochemical measurements indicated that the added B. cereus inoculum increased the charge transfer resistance and reduced corrosion current density. B. cereus cells with strong biofilm-forming capacity were able to adhere onto the Q235 CS surface to form compact biofilms and cause biomineralization. Surface characterization analysis demonstrated that the presence of the B. cereus inoculum reduced the amount of Fe2O3 and simultaneously increased the amount of CaCO3 in corrosion products. The corrosion inhibition mechanisms of the B. cereus inoculum involve forming biofilm, generating a biomineralized layer, and consuming dissolved oxygen. Thus, B. cereus inoculum provides a biological strategy for industrial cooling water anticorrosion application.


Assuntos
Bacillus cereus , Aço , Aço/química , Água , Corrosão , Carbono , Anaerobiose , Biofilmes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA