Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 340: 139922, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37611755

RESUMO

Environmentally Persistent Free Radicals (EPFRs) are usually generated by the electron transfer of a certain radical precursor on the surface of a carrier. They are characterized with high activity, wide migration range, and relatively long half-life period. In this review, we summarized the literature on EPFRs published since 2010, including their environmental occurrence and potential cytotoxicity and biotoxicity. The EPFRs in the atmosphere are the most abundant in the environment, mainly generated from the combustion of raw materials or biochar, and the C-center types (quinones, semiquinones radicals, etc.) may exist for a relatively long time. These EPFRs can transform into other substances (such as reactive oxygen species, ROS) under the influence of environmental factors, and partly enter soil and water by wet and dry deposition of particulate matter, which may promote the generation of EPFRs in those media. The wide distribution of EPFRs in the environment may lead to their exposure to biota including humans, resulting in cytotoxicity and biotoxicity. The EPFRs can influence the normal redox process of the biota, and generate a large number of free radicals like ROS. Exposure to EPFRs may change the expression of gene and activity of metabolic enzymes, and damage the cells, as well as some organs such as the lung, trachea, and heart. However, due to the difficulty in sample extraction, identification, and quantification of the specific EPFR individuals, the toxicity and exposure evaluation of biota are still limited which merits study in the future.


Assuntos
Atmosfera , Biota , Humanos , Espécies Reativas de Oxigênio , Radicais Livres , Transporte de Elétrons
2.
Biotechnol Appl Biochem ; 69(6): 2486-2495, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34894362

RESUMO

Microbial transglutaminase (MTG, EC 2.3.2.13) derived from Streptomyces mobaraensis is widely used in the food and pharmaceutical industry because of its ability to synthesize isopeptide bonds between the proteinogenic side chains of glutamine and lysine. The half-life (t1/2 ) of the activated wild-type enzyme at 60°C is 2 min. To improve the activity and thermostability of MTG for higher temperature application, three variants (Mut1, Mut2, and Mut3) were obtained by combining key amino acid mutations on the basis of previous research results. The best variant Mut2 with a specific combination of five of seven substitutions (S2P-S23V-Y24N-R215A-H289Y) shows a 10-fold increased half-life at 60°C (t1/2  = 27.6 min), and a 2.4-fold increased specific enzyme activity (39.3 U/mg). As measured by circular dichroism, the curve of Mut2 was basically the same as that of MTG-WT. The structural simulation of Mut2 shows that the overall structure is discoid with a crack, but the crack openings are wider than that of MTG-WT. Furthermore, structural analysis of Mut2 showed that there were seven hydrogen bonds and one π-anion interaction between Mut2 and its adjacent amino acids, and the number of hydrogen bonds was one more than that of MTG-WT (six hydrogen bonds).


Assuntos
Temperatura Alta , Transglutaminases , Transglutaminases/genética , Transglutaminases/química , Transglutaminases/metabolismo , Mutação , Meia-Vida
3.
Cancer Cell Int ; 13(1): 34, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23578365

RESUMO

BACKGROUND: T-cell acute lymphoblastic leukemia (T-ALL) is a highly aggressive hematologic malignancy. Immune tolerance induced by CD4+CD25+ regulatory T cells (Tregs) with high expression of Foxp3 is an important hypothesis for poor therapy response. Notch1 signaling is thought to be involved in the pathogenesis of this disease. Crosstalk between Notch and Foxp3+Tregs induced immune tolerance is unknown in T-ALL. We studied Foxp3 and Notch1 expression in vivo and in vitro, and analyzed the biological characteristics of T-ALL cell line systematically after Notch inhibition and explored the crosstalk between Notch signaling and Foxp3 expression. METHODS: In vivo, we established T-ALL murine model by Jurkat cells transplantation to severe combined immunodeficiency (SCID) mice. Notch1 and Foxp3 expression was detected. In vitro, we used γ-secretase inhibitor N-S-phenyl-glycine-t-butyl ester (DAPT) to block Notch1 signaling in Jurkat cells. Notch1, Hes-1 and Foxp3 genes and protein expression were detected by PCR and western blotting, respectively. The proliferation pattern, cell cycle and viability of Jurkat cells after DAPT treatment were studied. Protein expression of Notch1 target genes including NF-κB, p-ERK1/2 and STAT1 were determined. RESULTS: We show that engraftment of Jurkat cells in SCID mice occurred in 8 of 10 samples (80%), producing disseminated human neoplastic lymphocytes in PB, bone marrow or infiltrated organs. Notch1 and Foxp3 expression were higher in T-ALL mice than normal mice. In vitro, Jurkat cells expressed Notch1 and more Foxp3 than normal peripheral blood mononuclear cells (PBMCs) in both mRNA and protein levels. Blocking Notch1 signal by DAPT inhibited the proliferation of Jurkat cells and induced G0/G1 phase cell cycle arrest and apoptosis. Foxp3 as well as p-ERK1/2, STAT1 and NF-κB expression was down regulated after DAPT treatment. CONCLUSIONS: These findings indicate that regulation of Foxp3 expression does involve Notch signaling, and they may cooperatively regulate T cell proliferation in T-ALL.

4.
Biomed Opt Express ; 2(8): 2329-38, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21833369

RESUMO

By scanning biological tissues in vivo and in vitro with optical coherence tomography, it is found that liquid paraffin can enhance the percutaneous penetration of glycerol in deep layers of tissue and take synergistically optical clearing effect with glycerol. It is shown from experimental results that 30% - 50% liquid paraffin glycerol solutions have the best enhancement effect. Considering the refractive index of liquid paraffin and its medicinal value, we think liquid paraffin will play an important role in optical clearing as the penetration enhancer of glycerol in future clinical research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...