Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.644
Filtrar
1.
New Phytol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992951

RESUMO

Drought, especially terminal drought, severely limits wheat growth and yield. Understanding the complex mechanisms behind the drought response in wheat is essential for developing drought-resistant varieties. This study aimed to dissect the genetic architecture and high-yielding wheat ideotypes under terminal drought. An automated high-throughput phenotyping platform was used to examine 28 392 image-based digital traits (i-traits) under different drought conditions during the flowering stage of a natural wheat population. Of the i-traits examined, 17 073 were identified as drought-related. A genome-wide association study (GWAS) identified 5320 drought-related significant single-nucleotide polymorphisms (SNPs) and 27 SNP clusters. A notable hotspot region controlling wheat drought tolerance was discovered, in which TaPP2C6 was shown to be an important negative regulator of the drought response. The tapp2c6 knockout lines exhibited enhanced drought resistance without a yield penalty. A haplotype analysis revealed a favored allele of TaPP2C6 that was significantly correlated with drought resistance, affirming its potential value in wheat breeding programs. We developed an advanced prediction model for wheat yield and drought resistance using 24 i-traits analyzed by machine learning. In summary, this study provides comprehensive insights into the high-yielding ideotype and an approach for the rapid breeding of drought-resistant wheat.

2.
Chemosphere ; : 142822, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986778

RESUMO

The toxicity of triclosan (TCS) to various aquatic organisms has been demonstrated at environmental concentrations. However, the effects and mechanisms of TCS on toxic cyanobacteria remains largely unexplored. This study investigated the physiological and molecular variations in two representative toxic Microcystis species (M. aeruginosa and M. viridis) under exposure to TCS for 12 d. Our findings demonstrated that the median effective concentration (EC50) of TCS for both Microcystis species were close to the levels detected in the environment (M. aeruginosa: 9.62 µg L-1; M. viridis: 27.56 µg L-1). An increased level of reactive oxygen species (ROS) was observed in Microcystis, resulting in oxidative damage when exposed to TCS at concentrations ranging from 10 µg L-1 to 50 µg L-1. The photosynthetic activity of Microcystis had a certain degree of recovery capability at low concentrations of TCS. Compared to M. aeruginosa, the higher recovery capability of the photosynthetic system in M. viridis would be mainly attributed to the increased ability for PSII repair and phycobilisome synthesis. Additionally, the synthesis of microcystins in the two species and the release rate in M. viridis significantly increased under 10-50 µg L-1 TCS. At the molecular level, exposure to TCS at EC50 for 12 d induced the dysregulation of genes associated with photosynthesis and antioxidant system. The upregulation of genes associated with microcystin synthesis and nitrogen metabolism further increased the potential risk of microcystin release. Our results revealed the aquatic toxicity and secondary ecological risks of TCS at environmental concentrations, and provided theoretical data with practical reference value for TCS monitoring.

4.
Biomed Eng Online ; 23(1): 67, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003472

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a subtype of breast cancer with the worst prognosis. Radiotherapy (RT) is one of the core modalities for the disease; however, the ionizing radiation of RT has severe side effects. The consistent development direction of RT is to achieve better therapeutic effect with lower radiation dose. Studies have demonstrated that synergistic effects can be achieved by combining RT with non-ionizing radiation therapies such as light and magnetic therapy, thereby achieving the goal of dose reduction and efficacy enhancement. METHODS: In this study, we applied FeCo NPs with magneto thermal function and phototherapeutic agent IR-780 to construct an ionizing and non-ionizing radiation synergistic nanoparticle (INS NPs). INS NPs are first subjected to morphology, size, colloidal stability, loading capacity, and photothermal conversion tests. Subsequently, the cell inhibitory and cellular internalization were evaluated using cell lines in vitro. Following comprehensive assessment of the NPs' in vivo biocompatibility, tumor-bearing mouse model was established to evaluate their distribution, targeted delivery, and anti-tumor effects in vivo. RESULTS: INS NPs have a saturation magnetization exceeding 72 emu/g, a hydrodynamic particle size of approximately 40 nm, a negatively charged surface, and good colloidal stability and encapsulation properties. INS NPs maintain the spectral characteristics of IR-780 at 808 nm. Under laser irradiation, the maximum temperature was 92 °C, INS NPs also achieved the effective heat temperature in vivo. Both in vivo and in vitro tests have proven that INS NPs have good biocompatibility. INS NPs remained effective for more than a week after one injection in vivo, and can also be guided and accumulated in tumors through permanent magnets. Later, the results exhibited that under low-dose RT and laser irradiation, the combined intervention group showed significant synergetic effects, and the ROS production rate was much higher than that of the RT and phototherapy-treated groups. In the mice model, 60% of the tumors were completely eradicated. CONCLUSIONS: INS NPs effectively overcome many shortcomings of RT for TNBC and provide experimental basis for the development of novel clinical treatment methods for TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/radioterapia , Neoplasias de Mama Triplo Negativas/terapia , Animais , Linhagem Celular Tumoral , Camundongos , Humanos , Feminino , Nanopartículas/química , Radiação Ionizante , Portadores de Fármacos/química , Terapia Combinada , Indóis
5.
J Biol Chem ; : 107522, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960034

RESUMO

Chemotherapy is still the main therapeutic strategy for gastric cancer (GC). However, most patients eventually acquire multidrug resistance (MDR). Hyperactivation of the EGFR signaling pathway contributes to MDR by promoting cancer cell proliferation and inhibiting apoptosis. We previously identified the secreted protein CGA as a novel ligand of EGFR and revealed a CGA/EGFR/GATA2 positive feedback circuit that confers MDR in GC. Herein, we outline a microRNA-based treatment approach for MDR reversal that targets both CGA and GATA2. We observed increased expression of CGA and GATA2 and increased activation of EGFR in GC samples. Bioinformatic analysis revealed that miR-107 could simultaneously target CGA and GATA2, and the low expression of miR-107 was correlated with poor prognosis in GC patients. The direct interactions between miR-107 and CGA or GATA2 were validated by luciferase reporter assays and western blot analysis. Overexpression of miR-107 in MDR GC cells increased their susceptibility to chemotherapeutic agents, including fluorouracil, adriamycin and vincristine, in vitro. Notably, intratumor injection of the miR-107 prodrug enhanced MDR xenograft sensitivity to chemotherapies in vivo. Molecularly, targeting CGA and GATA2 with miR-107 inhibited EGFR downstream signaling, as evidenced by the reduced phosphorylation of ERK and AKT. These results suggest that miR-107 may contribute to the development of a promising therapeutic approach for the treatment of MDR in GC.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38990705

RESUMO

Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP), a significant worldwide public health threat, is common in patients in intensive care units. Methods: A retrospective study was conducted over a period of 22 months to assess the risk factors associated with infection caused by CRKP isolates. Strain identification was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and antimicrobial sensitivity was assessed using the micro broth dilution method and Kirby-Bauer test. The genes blaKPC, blaOXA-48, blaNDM, blaVIM, and blaGES were amplified using polymerase chain reaction (PCR), followed by sequencing of the PCR products. The polymerase hypermucoviscosity phenotype was determined using the string test. Capsular serotypes (K1, K2) and presence of the virulence gene (rmpA) in positive isolates were investigated using phenotypic tests followed by PCR. Results: Length of hospitalization and use of carbapenems were associated with CRKP infection. CRKP isolates exhibited extensive drug resistance, but retained sensitivity to colistin and ceftazidime-avibactam (CZA). The main gene detected in 35 CRKP isolates was blaKPC-2. In addition, 11 strains were positive in the string test, and two of these strains carried rmpA. Conclusions: Prolonged hospitalization and carbapenem exposure increased the risk of CRKP infection in intensive care unit (ICU) patients. The prevalence of CRKP carrying the blaKPC-2 gene was high, and suspected hypervirulent carbapenem-resistant K. pneumoniae isolates were scattered.

7.
Mater Today Bio ; 27: 101127, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38979128

RESUMO

Osteoarthritis (OA) is a degenerative disease potentially exacerbated due to inflammation, cartilage degeneration, and increased friction. Both mesenchymal stem cells (MSCs) and pro-inflammatory macrophages play important roles in OA. A promising approach to treating OA is to modify multi-functional hydrogel microspheres to target the OA microenvironment and structure. Arginyl-glycyl-aspartic acid (RGD) is a peptide widely used in bioengineering owing to its cell adhesion properties, which can recruit BMSCs and macrophages. We developed TLC-R, a microsphere loaded with TGF-ß1-containing liposomes. The recruitment effect of TLC-R on macrophages and BMSCs was verified by in vitro experiments, along with its function of promoting chondrogenic differentiation of BMSCs. And we evaluated the effect of TLC-R in balancing OA metabolism in vitro and in vivo. When TLC-R was co-cultured with BMSCs and lipopolysaccharide (LPS)-treated macrophages, it showed the ability to recruit both cells in substantial numbers. As the microspheres degraded, TGF-ß1 and chondroitin sulfate (ChS) were released to promote chondrogenic differentiation of the recruited BMSCs, modulate chondrocyte metabolism and inhibit inflammation induced by the macrophages. Furthermore, in vivo analysis showed that TLC-R restored the narrowed space, reduced osteophyte volume, and improved cartilage metabolic homeostasis in OA rats. Altogether, TLC-R provides a comprehensive and novel solution for OA treatment by dual-modulating inflammatory and chondrocyte metabolism.

8.
Leuk Lymphoma ; : 1-11, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861618

RESUMO

We aim to investigate cardiovascular mortality risk among diffuse large B-cell lymphoma (DLBCL) patients and explore cardiovascular mortality trends in the past decades in United States. We extracted data from the Surveillance, Epidemiology, and End Results database for adult patients diagnosed with DLBCL between 1975 and 2019. Standardized mortality ratio, joinpoint regression analysis, and competing risk model were analyzed. Overall, 49,918 patients were enrolled, of whom 4167 (8.3%) cardiovascular deaths were observed, which was 1.22 times the number expected (95%CI, 1.19-1.26). During 1985-2019, the incidence-based cardiovascular mortality rate increased by 0.98% per year (95%CI, 0.58-1.39%), with statistically significant increases in age groups younger than 75 years. The cumulative mortality from cardiovascular disease increased by age but never exceeded that from DLBCL. Older age, male sex, earlier year of diagnosis, lower tumor stage at diagnosis, chemotherapy, radiotherapy, and surgery were all poor prognostic factors for cardiovascular mortality.

9.
Molecules ; 29(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38930983

RESUMO

The Lichen moth, Lyclene dharma dharma (Arctiidae, Lithosiinae), plays a significant role in forest ecosystem dynamics. A concise and novel method to synthesize the active sex pheromone components, (S)-14-methyloctadecan-2-one ((S)-1), (S)-6-methyloctadecan-2-one ((S)-2), and their enantiomers has been developed. Key steps in the synthesis include the use of Evans' chiral auxiliaries, Grignard cross-coupling reactions, hydroboration-oxidation, and Wacker oxidation. The synthesized sex pheromone components hold potential value for studies on communication mechanisms, species identification, and ecological management.


Assuntos
Mariposas , Atrativos Sexuais , Atrativos Sexuais/química , Atrativos Sexuais/síntese química , Animais , Estereoisomerismo , Feminino , Estrutura Molecular
10.
Toxics ; 12(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38922096

RESUMO

The air fryer utilizes heated air rather than hot oil to achieve frying, eliminating the need for cooking oil, rendering it a healthier cooking method than traditional frying and baking. However, there is limited evidence supporting that the air fryer could effectively reduce the level of food-derived carcinogen. In this study, we compared the concentration of Benzo[a]pyrene (BaP), a typical carcinogen, in beef patties cooked using an air fryer and an oven, under different cooking conditions, including temperatures (140 °C, 160 °C, 180 °C, and 200 °C), times (9, 14, and 19 min), and oil added or not. The adjusted linear regression analysis revealed that the BaP concentration in beef cooked in the air fryer was 22.667 (95% CI: 15.984, 29.349) ng/kg lower than that in beef cooked in the oven. Regarding the air fryer, the BaP concentration in beef cooked without oil brushing was below the detection limit, and it was significantly lower than in beef cooked with oil brushing (p < 0.001). Therefore, cooking beef in the air fryer can effectively reduce BaP concentration, particularly due to the advantage of oil-free cooking, suggesting that the air fryer represents a superior option for individuals preparing meat at high temperatures.

11.
J Cancer ; 15(12): 3675-3683, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911393

RESUMO

Glioblastoma multiform (GBM) is categorized as the most malignant subtype of gliomas, which comprise nearly 75% of malignant brain tumors in adults. Increasing evidence suggests that network pharmacology will be a novel method for identifying the systemic mechanism of therapeutic compounds in diseases like cancer. The present study aimed to use a network pharmacology approach to establish the predictive targets of sciadopitysin against GBM and elucidate its biological mechanisms. Firstly, targets of sciadopitysin were obtained from the SwissTargetPrediction database, and genes associated with the pathogenesis of GBM were identified from the DiGeNET database. Sixty-four correlative hits were identified as anti-glioblastoma targets of sciadopitysin. Functional enrichment and pathway analysis revealed significant biological mechanisms of the targets. Interaction of protein network and cluster analysis using STRING resulted in two crucial interacting hub genes, namely, HSP90 and AKT1. Additionally, the in vitro cytotoxic potential of sciadopitysin was assessed on GBM U87 cells. The findings indicate that the pharmacological action of sciadopitysin against GBM might be associated with the regulation of two core targets: HSP90 and AKT1. Thus, the network pharmacology undertaken in the current study established the core active targets of sciadopitysin, which may be extensively applied with further validations for treatment in GBM.

12.
Mol Carcinog ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934786

RESUMO

Cancer-associated fibroblasts (CAFs) are abundant and heterogeneous stromal cells in the tumor microenvironment, which play important roles in regulating tumor progression and therapy resistance by transferring exosomes to cancer cells. However, how CAFs modulate esophageal squamous cell carcinoma (ESCC) progression and radioresistance remains incompletely understood. The expression of fibroblast activation protein (FAP) in CAFs was evaluated by immunohistochemistry in 174 ESCC patients who underwent surgery and 78 pretreatment biopsy specimens of ESCC patients who underwent definitive chemoradiotherapy. We sorted CAFs according to FAP expression, and the conditioned medium (CM) was collected to culture ESCC cells. The expression levels of several lncRNAs that were considered to regulate ESCC progression and/or radioresistance were measured in exosomes derived from FAP+ CAFs and FAP- CAFs. Subsequently, cell counting kit-8, 5-ethynyl-2'-deoxyuridine, transwell, colony formation, and xenograft assays were performed to investigate the functional differences between FAP+ CAFs and FAP- CAFs. Finally, a series of in vitro and in vivo assays were used to evaluate the effect of AFAP1-AS1 on radiosensitivity of ESCC cells. FAP expression in stromal CAFs was positively correlated with nerve invasion, vascular invasion, depth of invasion, lymph node metastasis, lack of clinical complete response and poor survival. Culture of ESCC cells with CM/FAP+ CAFs significantly increased cancer proliferation, migration, invasion and radioresistance, compared with culture with CM/FAP- CAFs. Importantly, FAP+ CAFs exert their roles by directly transferring the functional lncRNA AFAP1-AS1 to ESCC cells via exosomes. Functional studies showed that AFAP1-AS1 promoted radioresistance by enhancing DNA damage repair in ESCC cells. Clinically, high levels of plasma AFAP1-AS1 correlated with poor responses to dCRT in ESCC patients. Our findings demonstrated that FAP+ CAFs promoted radioresistance in ESCC cells through transferring exosomal lncRNA AFAP1-AS1; and may be a potential therapeutic target for ESCC treatment.

13.
Bioresour Technol ; 406: 131054, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944317

RESUMO

Microalgae extracellular polymeric substances (EPS) are complex high-molecular-weight polymers and the physicochemical properties of EPS strongly affect the core features of microalgae cultivation and resource utilization. Revealing the key roles of EPS in microalgae life-cycle processes in an interesting and novelty topic to achieve energy-efficient practical application of microalgae. This review found that EPS showed positive effect in non-gas uptake, extracellular electron transfer, toxicity resistance and heterotrophic symbiosis, but negative impact in gas transfer and light utilization during microalgae cultivation. For biomass harvesting, EPS favored biomass flocculation and large-size cell self-flocculation, but unfavored small size microalgae self-flocculation, membrane filtration, charge neutralization and biomass dewatering. During bioproducts extraction, EPS exhibited positive impact in extractant uptake, but the opposite effect in cellular membrane permeability and cell rupture. Future research on microalgal EPS were also identified, which offer suggestions for comprehensive understanding of microalgal EPS roles in various scenarios.

14.
Sci China Life Sci ; 67(7): 1338-1367, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833085

RESUMO

Plants or tissues can be regenerated through various pathways. Like animal regeneration, cell totipotency and pluripotency are the molecular basis of plant regeneration. Detailed systematic studies on Arabidopsis thaliana gradually unravel the fundamental mechanisms and principles underlying plant regeneration. Specifically, plant hormones, cell division, epigenetic remodeling, and transcription factors play crucial roles in reprogramming somatic cells and reestablishing meristematic cells. Recent research on basal non-vascular plants and monocot crops has revealed that plant regeneration differs among species, with various plant species using distinct mechanisms and displaying significant differences in regenerative capacity. Conducting multi-omics studies at the single-cell level, tracking plant regeneration processes in real-time, and deciphering the natural variation in regenerative capacity will ultimately help understand the essence of plant regeneration, improve crop regeneration efficiency, and contribute to future crop design.


Assuntos
Arabidopsis , Biotecnologia , Regeneração , Regeneração/genética , Regeneração/fisiologia , Biotecnologia/métodos , Arabidopsis/genética , Arabidopsis/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Epigênese Genética , Desenvolvimento Vegetal/genética , Plantas/genética , Plantas/metabolismo
15.
Diabetes Res Clin Pract ; 213: 111749, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906332

RESUMO

AIM: This study aimed to evaluate the prognostic value of the Naples Prognostic Score (NPS) for predicting mortality in patients with nonalcoholic fatty liver disease (NAFLD) and compare its performance with established non-invasive fibrosis scores, including the fibrosis-4 index (FIB-4) and NAFLD fibrosis score (NFS). METHODS: Data from 10,035 NAFLD patients identified within the 1999-2018 National Health and Nutrition Examination Survey (NHANES) were analyzed. Cox regression models assessed the association between NPS and all-cause mortality, while time-dependent ROC analysis compared its predictive accuracy with FIB-4 and NFS. Mediation analysis explored the role of phenotypic age acceleration (PhenoAgeAccel). RESULTS: NPS was significantly associated with all-cause mortality, with each point increase corresponding to a 26 % increased risk (HR = 1.26, 95 % CI: 1.19-1.34). NPS demonstrated comparable predictive performance to FIB-4 and NFS, with further improvement when combined with either score (HRs of 2.03 and 2.11 for NPS + FIB-4 and NPS + NFS, respectively). PhenoAgeAccel mediated 31.5 % of the effect of NPS on mortality. CONCLUSIONS: This study found that NPS has the potential to be an independent, cost-effective, and reliable novel prognostic indicator for NAFLD that may complement existing tools and help improve risk stratification and management strategies for NAFLD, thereby preventing adverse outcomes.

16.
J Environ Manage ; 364: 121435, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38889646

RESUMO

The abuse and uncontrolled discharge of antibiotics present a severe threat to environment and human health, necessitating the development of efficient and sustainable treatment technology. In this work, we employ a facile one-step electrodeposition method to prepare polyaniline/graphite oxide (PANI/GO) and samarium (Sm) co-modified Ti/PbO2 (Ti/PbO2-PANI/GO-Sm) electrode for the degradation of amoxicillin (AMX). Compared with traditional Ti/PbO2 electrode, Ti/PbO2-PANI/GO-Sm electrode exhibits more excellent oxygen evolution potential (2.63 V) and longer service life (56 h). In degradation experiment, under optimized conditions (50 mg L-1 AMX, 20 mA cm-2, pH 3, 0.050 M Na2SO4, 25 °C), Ti/PbO2-PANI/GO-Sm electrode achieves remarkable removal efficiencies of 88.76% for AMX and 79.92% for chemical oxygen demand at 90 min. In addition, trapping experiment confirms that ·OH plays a major role in the degradation process. Based on theoretical calculation and liquid chromatography-mass spectrometer results, the heterocyclic portion of AMX molecule is more susceptible to ·OH attacks. Thus, this novel electrode offers a sustainable and efficient solution to address environmental challenges posed by antibiotic-contaminated wastewater.


Assuntos
Amoxicilina , Eletrodos , Amoxicilina/química , Titânio/química , Poluentes Químicos da Água/química , Samário/química
17.
Front Bioeng Biotechnol ; 12: 1404651, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832127

RESUMO

Skin wound healing is a complex and tightly regulated process. The frequent occurrence and reoccurrence of acute and chronic wounds cause significant skin damage to patients and impose socioeconomic burdens. Therefore, there is an urgent requirement to promote interdisciplinary development in the fields of material science and medicine to investigate novel mechanisms for wound healing. Cerium oxide nanoparticles (CeO2 NPs) are a type of nanomaterials that possess distinct properties and have broad application prospects. They are recognized for their capabilities in enhancing wound closure, minimizing scarring, mitigating inflammation, and exerting antibacterial effects, which has led to their prominence in wound care research. In this paper, the distinctive physicochemical properties of CeO2 NPs and their most recent synthesis approaches are discussed. It further investigates the therapeutic mechanisms of CeO2 NPs in the process of wound healing. Following that, this review critically examines previous studies focusing on the effects of CeO2 NPs on wound healing. Finally, it suggests the potential application of cerium oxide as an innovative nanomaterial in diverse fields and discusses its prospects for future advancements.

18.
J Ethnopharmacol ; 333: 118414, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830451

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hepatocellular Carcinoma (HCC) is an aggressive killer worldwide with high incidence and mortality. The herb Chloranthus fortunei (A. Gray) Solms-Laub is known as "Si Ji Feng" and is classified as a Feng-type medicine in classic Yao medicines. According to Yao's medical beliefs, Chloranthus fortunei has the functions of dispelling Feng, regulating qi, detoxifying, promoting blood circulation, etc. Folk uses its decoctions to treat stagnant liver conditions, such as liver abscesses, cirrhosis, hepatitis, and liver cancer. However, the bioactivity and mechanisms of Chloranthus fortunei extract against HCC have not been reported. AIM OF THE STUDY: To investigate the anti-HCC bioactivity and potential mechanism of the extract of Chloranthus fortunei (CFS). MATERIALS AND METHODS: Using 70% ethanol for reflux extraction of CFS resulted in the CFS ethanol extract, followed by sequential extractions with petroleum ether, chloroform, ethyl acetate, and n-butanol, yielding four fractions. The CCK-8 assay was utilized to examine the cytotoxic effects of 4 fractions on MHCC97-H and HepG2 cells, exploring the most effective component, namely petroleum ether extracts of CFS (PECFS). The major active ingredients of PECFS were identified using LC/MS technology, and the impact on cell proliferation and apoptosis in HCC cells was studied. The key genes and proteins in the pathway were validated using RT-PCR and Western blotting. BALB/c nude mice were chosen for tumor xenotransplantation and PECFS therapy. hinders the proliferation of HCC cells and promotes apoptosis. RESULTS: Among the four fractions, it was found that PECFS have the highest antiproliferative activity against MHCC97-H and HepG2 cells (IC50 = 13.86, 10.55 µg/mL), with sesquiterpene compounds being the primary active constituents. The antiproliferative activity of PECFS on HCC cells was linked to the inhibition of cell cloning, invasion, and metastasis abilities, as well as the arrest of the cell cycle at the G2/M phase. Additionally, exerts pro-apoptotic effects on HCC cells by upregulating the pro-apoptotic protein Bax, downregulating the anti-apoptotic protein Bcl-2, and activating the expression of the Caspase family. Moreover, protein and m-RNA expression data showed that PECFS inhibits HCC cell proliferation and promotes apoptosis by regulating the PI3K/AKT/mTOR pathway. Besides, after PECFS treatment, tumor growth in nude mice was suppressed. CONCLUSION: PECFS can inhibit the viability of HCC cells by acting on the PI3K/AKT/mTOR pathway, demonstrating anti-tumor potential. This study's findings suggest that PECFS may represent a promising source of novel agents for liver cancer treatment, providing scientific evidence for the traditional application of CFS in treating HCC.

19.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1233-1241, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886421

RESUMO

The alteration of stand age instigates modifications in soil properties and microbial communities. Understanding the impacts of stand age on soil enzyme stoichiometry and microbial nutrient limitations in Camellia oleifera plantation is crucial for nutrient management. Taking C. oleifera plantation across four age groups (<10 a, 15-25 a, 30-50 a, >60 a) in a subtropical red soil region as test objects, we examined the response of soil enzyme stoichiometry and microbial nutrient limitations to change in stand age and analyzed the pathways for such responses. The results showed that, compared to that of stand age <10 a, enzyme C:N in the 15-25 a was increased and enzyme N:P was significantly reduced. Microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and microbial biomass phosphorus (MBP) exhibited a trend of initially decreasing and then increasing with stand age. MBN and MBN:MBP were significantly higher in the <10 a compared to that in the 30-50 a. MBC:MBN was significantly higher in the 30-50 a and >60 a compared to the <10 a and 15-25 a. Results of redundancy analysis revealed that soil nutrients, microbial biomass and their stoichiometry explained 92.4% of the variations in enzyme stoichiometry. Partial least squares path modeling (PLS-PM) results demonstrated that soil organic carbon (SOC) had a positive effect on microbial C limitation; MBN, MBN:MBP, MBC:MBP, SOC, and total nitrogen had a nega-tive overall effect on microbial P limitation, whereas soil C:N had a positive overall effect on microbial P limitation. There was a significant positive correlation between microbial C and P limitations. With increasing stand age, microbial nutrient limitation shifted from N and P limitation (<10 a) to C and P limitation (15-25 a, 30-50 a, >60 a).


Assuntos
Camellia , Carbono , Nitrogênio , Fósforo , Microbiologia do Solo , Solo , Camellia/metabolismo , Camellia/crescimento & desenvolvimento , Camellia/química , Solo/química , Nitrogênio/metabolismo , Nitrogênio/análise , Carbono/metabolismo , Fósforo/metabolismo , Nutrientes/metabolismo , Nutrientes/análise , Fatores de Tempo , China , Biomassa
20.
Int J Biol Markers ; : 3936155241262045, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38887052

RESUMO

OBJECTIVES: This study aimed to explore the value of D-dimer levels in predicting the treatment efficacy and prognosis of advanced esophageal squamous cell carcinoma (ESCC) treated with programmed cell death protein-1/programmed death-ligand 1 (PD-1/PD-L1) inhibitors. METHODS: The study retrospectively analyzed 233 ESCC patients who received PD-1/PD-L1 inhibitors. The optimal cut-off values for platelets, fibrinogen, and D-dimer were calculated based on maximally selected rank statistics for patients' overall survival. Univariate and multivariate analyses of progression-free survival and overall survival were conducted by Cox proportional hazards regression model. Subgroup analyses of D-dimer levels in different fibrinogen levels were performed by log-rank test. RESULTS: The multivariate Cox regression analyses demonstrated that ESCC patients with D-dimer levels > 236 ng/mL exhibited both poorer progression-free survival (P = 0.004) and overall survival (P < 0.0001) compared to those with low D-dimer levels. The subgroup analyses further indicated that in the group of low fibrinogen levels, the higher D-dimer levels of ESCC patients exhibited significantly shorter progression-free survival (P = 0.0021) and overall survival (P < 0.0001). CONCLUSIONS: The study revealed that the D-dimer levels possess predictive value for the treatment efficacy and prognosis of ESCC patients treated with PD-1/PD-L1 inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...