Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mini Rev Med Chem ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38859780

RESUMO

Long noncoding RNA (lncRNA) is a non-coding RNA with a length of more than 200 nucleotides, involved in multiple regulatory processes in vivo, and is related to the physiology and pathology of human diseases. An increasing number of experimental results suggest that when lncRNA is abnormally expressed, it results in the development of tumors. LncRNAs can be divided into five broad categories: sense, antisense, bidirectional, intronic, and intergenic. Studies have found that some antisense lncRNAs are involved in a variety of human tumorigenesis. The newly identified ROR1-AS1, which functions as an antisense RNA of ROR1, is located in the 1p31.3 region of the human genome. Recent studies have reported that abnormal expression of lncRNA ROR1-AS1 can affect cell growth, proliferation, invasion, and metastasis and increase oncogenesis and tumor spread, indicating lncRNA ROR1-AS1 as a promising target for many tumor biological therapies. In this study, the pathophysiology and molecular mechanism of ROR1-AS1 in various malignancies are discussed by retrieving the related literature. ROR1-AS1 is a cancer-associated lncRNA, and studies have found that it is either over- or underexpressed in multiple malignancies, including liver cancer, colon cancer, osteosarcoma, glioma, cervical cancer, bladder cancer, lung adenocarcinoma, and mantle cell lymphoma. Furthermore, it has been demonstrated that lncRNA ROR1-AS1 participates in proliferation, migration, invasion, and suppression of apoptosis of cancer cells. Furthermore, lncRNA ROR1-AS1 promotes the development of tumors by up-regulating or downregulating ROR1-AS1 conjugates and various pathways and miR-504, miR-4686, miR-670-3p, and miR-375 sponges, etc., suggesting that lncRNA ROR1-AS1 may be used as a marker in tumors or a potential therapeutic target for a variety of tumors.

2.
Carbohydr Res ; 540: 109124, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701680

RESUMO

A sensitive and precise HPLC-DAD method with pre-column PMP derivatization was established and validated, for analyzing the polysaccharides in Bacillus Calmette-Guérin polysaccharide and nucleic acid (BCG-PSN) isolates, after acid hydrolysis. And the HPLC fingerprint profiling was used to analyze its monosaccharide composition. The monosaccharide concentration-peak area calibration curve was of good linearity (R2 > 0.99), over the range of 0.016-0.08 mg/mL for mannose or 0.24-1.20 mg/mL for glucose, with high recovery of 93-105 % for quality control samples. The intra-day RSD values of mannose and glucose concentration were less than 2.5 % and 2.1 %, respectively, and their inter-day RSD values were less than 4.3 % and 2.2 %, respectively, and remained stable for up to 14 days. This method also remained durable against changes in chromatographic parameters, but it's susceptible to the flow rate of mobile phase. Additionally, the method was applied to analyze the content of mannose and glucose in 22 batches BCG-PSN powder and 17 batches BCG-PSN injection. The results showed that the HPLC-DAD fingerprint spectra of all the BCG-PSN powder and BCG-PSN injection samples had a high degree of similarity, with the similar indexes up to 0.999 and 0.998, respectively. The HPLC-DAD method with pre-column PMP derivatization is highly rapid, effective, visual, and accurate for determination of monosaccharide contents. The validated method was successfully applied to the analysis of polysaccharide in both BCG-PSN powder and injection.


Assuntos
Monossacarídeos , Mycobacterium bovis , Monossacarídeos/análise , Monossacarídeos/química , Cromatografia Líquida de Alta Pressão , Polissacarídeos Bacterianos/química , Ácidos Nucleicos/análise , Ácidos Nucleicos/química , Manose/química , Manose/análise
3.
Mini Rev Med Chem ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38616756

RESUMO

More than 300 membranes make up the SLC family of transporters, utilizing an ion gradient or electrochemical potential difference to move their substrates across biological membranes. The SLC16 gene family contains fourteen members. Proton-linked transportation of monocarboxylates can be promoted by the transporters MCT1, which the SLC16A1 gene family encodes. Glycolysis is constitutively up-regulated in cancer cells, and the amount of lactate produced as a result is correlated with prognosis. Further speaking, SLC16A1 plays an essential role in controlling the growth and spread of tumors, according to mounting evidence. Additionally, LncRNAs are the collective term for all genes that produce RNA transcripts longer than 200 nucleotides but do not convert into proteins. It has steadily developed into a hub for research, offering an innovative approach to tumor study as technology related to molecular biology advances. The growing study has uncovered SLC16A1-AS1, an RNA that acts as an antisense to SLC16A1, which is erroneously expressed in various types of cancers. Therefore, we compiled the most recent information on the physiological functions and underlying processes of SLC16A1 and the LncRNA SLC16A1-AS1 during tumor development to explore their impact on cancer treatment and prognosis. We compiled the most recent information on the physiological functions and underlying processes of SLC16A1 and the LncRNA SLC16A1-AS1 during tumor development to explore their impact on cancer treatment and prognosis. Relevant studies were retrieved and collected through the PubMed system. After determining SLC16A1 and SLC16A1-AS1 as the research object, we found a close relationship between SLC16A1 and tumorigenesis as well as the influencing factors through the analysis of the research articles. SLC16A1 regulates lactate chemotaxis while uncovering SLC16A1- as1 as an antisense RNA acting through multiple pathways; they affect the metabolism of tumor cells and have an impact on the prognosis of patients with various cancers.

4.
Curr Med Chem ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38333975

RESUMO

Given the threat of ever-growing cancer morbidity, it is a cutting-edge frontier for multiple disciplines to apply nanotechnology in cancer therapy. Nanomedicine is now perpetually influencing the diagnosis and treatment of cancer. Meanwhile, tumorigenesis and cancer progression are intimately associated with inflammation. Inflammation can implicate in various tumor progression via the same or different pathways. Therefore, current nanomedicines exhibit tumor-suppressing function through inflammatory pathways. At present, the comprehensive understanding and research on the mechanism of various nanoparticles in cancer treatment are still in progress. In this review, we summarized the applications of nanomedicine in tumor-targeting inflammatory pathways, suggesting that nanoparticles could be a budding star for cancer therapy.

5.
Mini Rev Med Chem ; 23(6): 719-733, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36029079

RESUMO

Long non-coding RNA has attracted the interest of researchers as a relevant factor that can influence human cancers. As an oncogene and suppressor gene, it has numerous pathways and is closely related to the pathophysiology of human diseases. Meanwhile, it may become a novel treatment option and target for tumor treatment. CRNDE is the gene symbol for Colorectal Neoplasia Differentially Expressed (non-protein-coding) since it was found to be considerably higher in colorectal cancer when it was first discovered. It's transcribed from human chromosome 16. Many studies have shown that it is intimately linked to the etiology of many tumors and malignancies. According to the paper, the biological function and pathophysiological mechanism of CRNDE in tumors have been studied extensively in recent years. PubMed served as an essential platform for conducting literature searches and related analyses. CRNDE, a long non-coding RNA closely related to tumors, was highly expressed in many tumor cells. There were various underlying mechanisms affecting the progression of CRNDE-regulated tumorigenesis, including hepatocellular carcinoma, gastric cancer, prostate carcinoma, oral squamous cell carcinoma, breast cancer, thyroid cancer, myeloma, leukemia, melanoma, colorectal cancer, glioblastoma, osteosarcoma, cervical cancer, intrahepatic cholangiocarcinoma, nonsmall cell lung cancer, hepatoblastoma cell tumor, abdominal aortic aneurysm, nasopharyngeal carcinoma, bladder cancer, Wilms tumor, medulloblastoma, pancreatic cancer, gallbladder cancer, ovarian cancer, and renal cell carcinoma. CRNDE is involved in the processes of proliferation, migration, invasion, and inhibition of apoptosis of various cancer cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Colorretais , Neoplasias Hepáticas , Neoplasias Pulmonares , MicroRNAs , Neoplasias Bucais , RNA Longo não Codificante , Masculino , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , RNA Longo não Codificante/genética , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Neoplasias Pulmonares/patologia , Neoplasias Bucais/genética , Neoplasias Hepáticas/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo
6.
Molecules ; 27(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36080458

RESUMO

Bacillus Calmette-Guérin polysaccharide and nucleic acid (BCG-PSN), extracted from Mycobacterium bovis, is an immunoregulatory medicine commonly used in clinic. However, the structural characteristics and potential pharmacological efficacy of the polysaccharides from BCG-PSN remain unclear. Herein, two polysaccharides (BCG-1 and BCG-2) were purified and their structures were characterized. Monosaccharide composition analysis combined with methylation analysis and NMR data indicated that BCG-1 and BCG-2 were an α-D-(1→4)-mannan with (1→2)-linked branches, and an α-D-(1→4)-glucan with (1→6)-linked branches, respectively. Herein, the mannan from BCG-PSN was first reported. Bioactivity assays showed that BCG-1 and BCG-2 dose-dependently and potently increased the production of inflammatory mediators (NO, TNF-α, IL-6, IL-1ß, and IL-10), as well as their mRNA expressions in RAW264.7 cells; both have similar or stronger effects compared with BCG-PSN injection. These data suggest that BCG-1 and BCG-2 are very likely the active ingredients of BCG-PSN.


Assuntos
Mycobacterium bovis , Adjuvantes Imunológicos , Vacina BCG , Mananas/farmacologia , Mycobacterium bovis/química , Polissacarídeos/farmacologia
7.
J Phys Chem Lett ; 12(13): 3387-3392, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33787268

RESUMO

Two-dimensional (2D) perovskites are an emerging class of layered materials with unique optoelectronic properties. To date, most 2D perovskites with Ruddlesden-Popper (RP) phase reported are organic- inorganic hybrid perovskites with long organic spacers. Here, we report a high-quality all-inorganic 2D perovskite, Cs2PbI2Cl2, synthesized by an aqueous method. The as-synthesized perovskite crystals exhibit large in-plane emission and reflection optical anisotropy. The maximum in-plane linear dichroic ratio is up to 9.6 for exciton emission and 2.0 for reflection at 77 K. The large in-plane optical anisotropy may be ascribed to the strong electron-phonon interaction-induced lattice distortion. The large optical anisotropy enables us to construct a polarization-sensitive photodetector based on this perovskite, for which the linear dichroic ratio of photoresponse is about 1.2. Our study provides an alternative avenue to achieve in-plane optical anisotropy in an isotropy structure and thus would be of great importance for polarization-associated applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...