Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 10(5)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35630402

RESUMO

Appropriate fertilization can enhance forest productivity by maintaining soil fertility and improving the structure of the bacterial community. However, there is still uncertainty surrounding the effects of combined application of organic and inorganic fertilizers on soil nutrient status and bacterial community structure. A fertilization experiment was set up in an eight-year-old teak plantation with five treatments involved: mixed organic and NPK compound fertilizers (OCF), mixed organic and phosphorus fertilizers (OPF), mixed organic, NPK and phosphorus fertilizers (OCPF), mixed NPK and phosphorus fertilizers (CPF) and no fertilization (CK). Soil chemical properties and bacterial communities were investigated, and the co-occurrence pattern of the bacterial community under different fertilization treatments was compared. The results showed that the contents of soil organic matter and nitrate nitrogen, and the soil pH values were the highest after OCPF treatment, which were 20.39%, 90.91% and 8.16% higher than CK, respectively. The richness and diversity of bacteria underwent no obvious changes, but the structure of the soil's bacterial community was significantly altered by fertilization. Of the dominant bacteria taxa, the relative abundance increased for Gemmatimonadetes, Myxococcota, ADurb.Bin063-13 and Candidatus_Koribacter, and decreased for Chloroflexi, Proteobacteria, JG30-KF-AS9 and Acidothermus under OCPF treatment in comparison to CK. The number of nodes and edges, the average degree and the network density of bacterial community co-occurrence networks were the greatest in OCPF treatment, indicating that application of OCPF could make the network structure of soil bacteria more stable and complex. Moreover, soil pH and organic matter were significantly correlated with bacterial community structure and were considered the main influencing factors. These findings highlight that the combined application of organic, NPK and phosphorus fertilizers is highly beneficial for improving soil quality and optimizing bacterial community structure in teak plantations.

2.
Front Plant Sci ; 13: 830413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310646

RESUMO

Changes in plant leaf color during development are directly related to the accumulation or degradation of certain phytochemicals such as anthocyanins. Since some anthocyanins can be beneficial to human health and provide insights into the biology of leaves, the underlying processes and timing by which plants produce these molecules has been the focus of numerous studies. The tree species Hopea hainanensis generally produces green leaves at all growth stages; however, a few explored individuals have been identified possessing red leaves on the top of the seedlings at a young stage. While the phenomenon of leaf color varying with age has been studied in several species, the underlying mechanisms are largely unknown in H. hainanensis. Using a metabolomics approach, the young red leaves in H. hainanensis were found to contain higher levels of anthocyanins and flavonoids than the young green-leaved individuals. Among anthocyanins, pelargonidin and cyanidin were the most likely candidates contributing to the red color of the young leaves. Transcriptome results indicated the genes related to the production of these anthocyanins were significantly upregulated, leading to greater accumulation of red pigments. Specifically, the expression of several MYB and bHLH genes in young red leaf lines was significantly higher than that in the young green leaf lines, especially HhMYB66, HhMYB91, HhMYB6, and HhbHLH70. As such these four transcription factors are probably the main regulatory genes resulting in young red leaves in H. hainanensis. From these results, comparative analyses with other species can be made to better understand the evolution of pigment biosynthesis and how anthocyanins function in plant metabolism and evolution/adaptation.

3.
Front Microbiol ; 12: 737068, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899624

RESUMO

Arbuscular mycorrhizal (AM) fungi play a crucial role in promoting plant growth, enhancing plant stress resistance, and sustaining a healthy ecosystem. However, little is known about the mycorrhizal status of teak plantations. Here, we evaluated how the AM fungal communities of rhizosphere soils and roots respond to different stand ages of teak: 22, 35, 45, and 55-year-old from the adjacent native grassland (CK). A high-throughput sequencing method was used to compare the differences in soil and root AM fungal community structures. In combination with soil parameters, mechanisms driving the AM fungal community were revealed by redundancy analysis and the Mantel test. Additionally, spore density and colonization rates were analyzed. With increasing stand age, the AM fungal colonization rates and spore density increased linearly. Catalase activity and ammonium nitrogen content also increased, and soil organic carbon, total phosphorous, acid phosphatase activity, available potassium, and available phosphorus first increased and then decreased. Stand age significantly changed the structure of the AM fungal community but had no significant impact on the diversity of the AM fungal community. However, the diversity of the AM fungal community in soils was statistically higher than that in the roots. In total, nine and seven AM fungal genera were detected in the soil and root samples, respectively. The majority of sequences in soils and roots belonged to Glomus. Age-induced changes in soil properties could largely explain the alterations in the structure of the AM fungal community along a chronosequence, which included total potassium, carbon-nitrogen ratio, ammonium nitrogen, catalase, and acid phosphatase levels in soils and catalase, acid phosphatase, pH, and total potassium levels in roots. Soil nutrient availability and enzyme activity were the main driving factors regulating the shift in the AM fungal community structure along a chronosequence of the teak plantations.

4.
Biology (Basel) ; 10(12)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34943244

RESUMO

Soil bacterial communities play crucial roles in ecosystem functions and biogeochemical cycles of fundamental elements and are sensitive to environmental changes. However, the response of soil bacterial communities to chronosequence in tropical ecosystems is still poorly understood. This study characterized the structures and co-occurrence patterns of soil bacterial communities in rhizosphere and bulk soils along a chronosequence of teak plantations and adjacent native grassland as control. Stand ages significantly shifted the structure of soil bacterial communities but had no significant impact on bacterial community diversity. Bacterial community diversity in bulk soils was significantly higher than that in rhizosphere soils. The number of nodes and edges in the bacterial co-occurrence network first increased and then decreased with the chronosequence. The number of strongly positive correlations per network was much higher than negative correlations. Available potassium, total potassium, and available phosphorus were significant factors influencing the structure of the bacterial community in bulk soils. In contrast, urease, total potassium, pH, and total phosphorus were significant factors affecting the structure of the bacterial community in the rhizosphere soils. These results indicate that available nutrients in the soil are the main drivers regulating soil bacterial community variation along a teak plantation chronosequence.

5.
Plant Cell Rep ; 39(9): 1199-1217, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32577818

RESUMO

KEY MESSAGE: MiRNA transcriptome analysis of different tissues in poplar and larch suggests variant roles of miRNAs in regulating wood formation between two kinds of phyla. Poplar and larch belong to two different phyla. Both are ecological woody species and major resources for wood-related industrial applications. However, wood properties are different between these two species and the molecular basis is largely unknown. In this study, we performed high-throughput sequencing of microRNAs (miRNAs) in the three tissues, xylem, phloem and leaf of Populus alba × Populus glandulosa and Larix kaempferi. Differentially expressed miRNA (DEmiRNA) analysis identified 85 xylem-specific miRNAs in P. alba × P. glandulosa and 158 xylem-specific miRNAs in L. kaempferi. Among 36 common miRNAs, 12 were conserved between the two species. GO and KEGG analyses of the miRNA target genes showed similar metabolism in two species. Through KEGG and BLASTN, we predicted target genes of xylem differentially expressed (DEmiRNA) in the wood formation-related pathways and located DEmiRNAs in these pathways. A network was built for wood formation-related DEmiRNAs, their target genes and orthologous genes in Arabidopsis thaliana. Comparison of DEmiRNA and target gene annotation between P. alba × P. glandulosa and L. kaempferi suggested the different functions of DEmiRNAs and divergent mechanism in wood formation between two species, providing knowledge to understand wood formation mechanism in gymnosperm and angiosperm woody plants.


Assuntos
Larix/genética , MicroRNAs/genética , Populus/genética , Madeira/genética , Arabidopsis/genética , Sequência de Bases , Celulose/genética , Celulose/metabolismo , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Lignina/genética , Lignina/metabolismo , Floema/genética , Folhas de Planta/genética , Polissacarídeos/genética , Polissacarídeos/metabolismo , Reprodutibilidade dos Testes , Madeira/crescimento & desenvolvimento , Madeira/metabolismo , Xilema/genética
6.
Molecules ; 25(9)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392900

RESUMO

The properties of teak wood, such as natural durability and beautiful color, are closely associated with wood extractives. In order to further understand the performance differences between teak heartwood and sapwood, we analyzed the chemical components of extractives from 12 wood samples using an ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS)-based metabolomics approach. In total, 691 metabolites were identified, and these were classified into 17 different categories. Clustering analysis and principal component analysis of metabolites showed that heartwood samples could be clearly separated from sapwood samples. Differential metabolite analysis revealed that the levels of primary metabolites, including carbohydrates, amino acids, lipids, and nucleotides, were significantly lower in the heartwood than in the sapwood. Conversely, many secondary metabolites, including flavonoids, phenylpropanoids, and quinones, had higher levels in the heartwood than in the sapwood. In addition, we detected 16 specifically expressed secondary metabolites in the heartwood, the presence of which may correlate with the durability and color of teak heartwood. Our study improves the understanding of differential metabolites between sapwood and heartwood of teak and provides a reference for the study of heartwood formation.


Assuntos
Lamiaceae/química , Lamiaceae/metabolismo , Metabolômica/métodos , Metabolismo Secundário , Madeira/análise , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Flavonoides/análise , Análise de Componente Principal , Quinonas/análise , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...